Pre-potassiated hydrated vanadium oxide as cathode for quasi-solid-state zinc-ion battery
-
* Corresponding authors.
E-mail addresses: yh@nwpu.edu.cn (H. Yu), xhrui@gdut.edu.cn (X. Rui).
Citation:
Qifei Li, Xiangxiang Ye, Hong Yu, Chengfeng Du, Wenping Sun, Weiling Liu, Hongge Pan, Xianhong Rui. Pre-potassiated hydrated vanadium oxide as cathode for quasi-solid-state zinc-ion battery[J]. Chinese Chemical Letters,
;2022, 33(5): 2663-2668.
doi:
10.1016/j.cclet.2021.09.091
Q.F. Li, X.H. Rui, D. Chen, et al., Nano-Micro Lett. 12 (2020) 1267
F. Wang, O. Borodin, T. Gao, et al., Nat. Mater. 17 (2018) 543–549
doi: 10.1038/s41563-018-0063-z
Y. Bai, H. Zhang, B. Xiang, et al., J. Colloid Interface Sci. 597 (2021) 422–428
doi: 10.1016/j.jcis.2021.04.010
M. Song, H. Tan, D. Chao, H.J. Fan, Adv. Funct. Mater. 28 (2018) 1802564
doi: 10.1002/adfm.201802564
D. Xie, F. Hu, X. Yu, et al., Chin. Chem. Lett. 31 (2020) 2268–2274
doi: 10.1016/j.cclet.2020.02.052
L. Su, L. Liu, Y. Wang, et al., Chin. Chem. Lett. 31 (2020) 2358–2364
doi: 10.1016/j.cclet.2020.03.014
Y. Zeng, X. Zhang, Y. Meng, et al., Adv. Mater. 29 (2017) 1700274
doi: 10.1002/adma.201700274
D. Chao, C. Zhu, M. Song, et al., Adv. Mater. 30 (2018) 1803181
doi: 10.1002/adma.201803181
S. Huang, F. Wan, S. Bi, et al., Angew. Chem. Int. Ed. 58 (2019) 4313–4317
doi: 10.1002/anie.201814653
K. Leng, G. Li, J. Guo, et al., Adv. Funct. Mater. 30 (2020) 2001317
doi: 10.1002/adfm.202001317
B. Tang, L. Shan, S. Liang, J. Zhou, Energy Environ. Sci. 12 (2019) 3288–3304
doi: 10.1039/c9ee02526j
B. Yang, X. Cao, S. Wang, et al., Electrochim. Acta 385 (2021) 138447
doi: 10.1016/j.electacta.2021.138447
W. Fan, F. Liu, Y. Liu, et al., Chem. Commun. 56 (2020) 2039–2042
doi: 10.1039/c9cc08604h
L. Wang, Z. Cao, P. Zhuang, et al., ACS Appl. Mater. Interfaces 13 (2021) 13338–13346
doi: 10.1021/acsami.1c01405
K. Zhang, D. Kim, Z. Hu, et al., Nat. Commun. 10 (2019) 5203
doi: 10.1038/s41467-018-07646-4
Z. Li, T. Liu, R. Meng, et al., Energy Environ. Mater. 4 (2021) 111–116
doi: 10.1002/eem2.12108
Z. Liu, G. Pulletikurthi, F. Endres, ACS Appl. Mater. Interfaces 8 (2016) 12158–12164
doi: 10.1021/acsami.6b01592
H. Yi, R. Qin, S. Ding, et al., Adv. Funct. Mater. 31 (2021) 2006970
doi: 10.1002/adfm.202006970
M. Zhang, R. Liang, T. Or, et al., Small Struct. 2 (2021) 2000064
doi: 10.1002/sstr.202000064
X. Zhang, H. Chen, W. Liu, et al., Chem. Asian J. 15 (2020) 1430–1435
doi: 10.1002/asia.202000162
D. Chen, X. Rui, Q. Zhang, et al., Nano Energy 60 (2019) 171–178
doi: 10.1016/j.nanoen.2019.03.034
C. Xia, J. Guo, Y. Lei, et al., Adv. Mater. 30 (2018) 1705580
doi: 10.1002/adma.201705580
S. Chen, K. Li, K.S. Hui, J. Zhang, Adv. Funct. Mater. 30 (2020) 2003890
doi: 10.1002/adfm.202003890
W. Liu, L. Dong, B. Jiang, et al., Electrochim. Acta 320 (2019) 134565
doi: 10.1016/j.electacta.2019.134565
A. Konarov, N. Voronina, J.H. Jo, et al., ACS Energy Lett. 3 (2018) 2620–2640
doi: 10.1021/acsenergylett.8b01552
S. Zhao, B. Han, D. Zhang, et al., J. Mater. Chem. A6 (2018) 5733–5739
doi: 10.1039/C8TA01031E
G. Fang, C. Zhu, M. Chen, et al., Adv. Funct. Mater. 29 (2019) 1808375
doi: 10.1002/adfm.201808375
A. Moretti, S. Jeong, S. Passerini, ChemElectroChem 3 (2016) 1048–1053
doi: 10.1002/celc.201600040
F. Ming, H. Liang, Y. Lei, et al., ACS Energy Lett. 3 (2018) 2602–2609
doi: 10.1021/acsenergylett.8b01423
C. Liu, Z. Neale, J. Zheng, et al., Energy Environ. Sci. 12 (2019) 2273–2285
doi: 10.1039/c9ee00956f
Y.J. Zhang, X.Y. Yuan, T. Lu, et al., J. Colloid Interface Sci. 585 (2021) 347–354
doi: 10.1177/0959651820948648
S. Natarajan, S. -J. Kim, V. Aravindan, J. Mater. Chem. A 8 (2020) 9483–9495
doi: 10.1039/d0ta02852e
J. Sun, Y. Zhang, Y. Liu, et al., J. Colloid Interface Sci. 587 (2021) 845–854
doi: 10.3390/jmse9080845
G.S. Xu, Y.J. Zhang, Z.W. Gong, et al., J. Colloid Interface Sci. 593 (2021) 417–423
doi: 10.1016/j.jcis.2021.02.090
C. -Y. Lee, A.C. Marschilok, A. Subramanian, et al., Phys. Chem. Chem. Phys. 13 (2011) 18047–18054
doi: 10.1039/c1cp21658a
C. Xia, J. Guo, P. Li, et al., Angew. Chem. Int. Ed. 57 (2018) 3943–3948
doi: 10.1002/anie.201713291
D. Kundu, B.D. Adams, V. Duffort, et al., Nat. Energy 1 (2016) 16119
doi: 10.1038/nenergy.2016.119
J. Feng, Y. Wang, S. Liu, et al., ACS Appl. Mater. Interfaces 12 (2020) 24726–24736
doi: 10.1021/acsami.0c04199
L. Xu, Y. Zhang, J. Zheng, et al., Mater. Today Energy 18 (2020) 100509
doi: 10.1016/j.mtener.2020.100509
J. He, X. Liu, H. Zhang, et al., ChemSusChem 13 (2020) 1568–1574
doi: 10.1002/cssc.201902659
M. Tian, C. Liu, J. Zheng, et al., Energy Storage Mater. 29 (2020) 9–16
doi: 10.1016/j.ensm.2020.03.024
M. Ghosh, S. Dilwale, V. Vijayakumar, S. Kurungot, ACS Appl. Mater. Interfaces 12 (2020) 48542–48552
doi: 10.1021/acsami.0c13221
S. Mickevicius, V. Bondarenka, S. Grebinskij, et al., Micron 40 (2009) 126–129
doi: 10.1016/j.micron.2007.12.010
S. Li, M. Chen, G. Fang, et al., J. Alloy. Compd. 801 (2019) 82–89
doi: 10.15302/j-laf-20190107
Y. Liu, Y. Qiao, W. Zhang, et al., Nano Energy 5 (2014) 97–104
doi: 10.1016/j.nanoen.2014.02.010
Q. Li, D. Chen, H. Tan, et al., J. Energy Chem. 40 (2020) 15–21
doi: 10.1117/12.2573596
X.H. Rui, D.H. Sim, C. Xu, et al., RSC Adv. 2 (2012) 1174–1180
doi: 10.1039/C1RA00698C
B. Tang, G. Fang, J. Zhou, et al., Nano Energy 51 (2018) 579–587
doi: 10.1016/j.nanoen.2018.07.014
L. Deng, X. Niu, G. Ma, et al., Adv. Funct. Mater. 28 (2018) 1800670
doi: 10.1002/adfm.201800670
X. Guo, G. Fang, W. Zhang, et al., Adv. Energy Mater. 8 (2018) 1801819
doi: 10.1002/aenm.201801819
Q. Li, H. Zhu, Y. Tang, et al., Chem. Commun. 55 (2019) 12108–12111
doi: 10.1039/c9cc06362e
J. Liu, Y. Cao, J. Zhou, et al., ACS Appl. Mater. Interfaces 12 (2020) 54537–54544
doi: 10.1021/acsami.0c13835
Z. Yan, H.Y. Pan, J.Y. Wang, et al., Rare Metals 40 (2021) 1357–1365
doi: 10.1007/s12598-020-01494-2
Jiayu Bai , Songjie Hu , Lirong Feng , Xinhui Jin , Dong Wang , Kai Zhang , Xiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326
Yang Li , Xiaoxu Liu , Tianyi Ji , Man Zhang , Xueru Yan , Mengjie Yao , Dawei Sheng , Shaodong Li , Peipei Ren , Zexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551
Yunyu Zhao , Chuntao Yang , Yingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865
Qiao Wang , Ziling Jiang , Chuang Yu , Liping Li , Guangshe Li . Research progress of inorganic sodium ion conductors for solid-state batteries. Chinese Chemical Letters, 2025, 36(6): 110006-. doi: 10.1016/j.cclet.2024.110006
Lingjiang Kou , Yong Wang , Jiajia Song , Taotao Ai , Wenhu Li , Mohammad Yeganeh Ghotbi , Panya Wattanapaphawong , Koji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368
Tong Peng , Yupeng Xing , Lan Mu , Chenggang Wang , Ning Zhao , Wenbo Liao , Jianlei Li , Gang Zhao . Recent research on aqueous zinc-ion batteries and progress in optimizing full-cell performance. Chinese Chemical Letters, 2025, 36(6): 110039-. doi: 10.1016/j.cclet.2024.110039
Ziling Jiang , Shaoqing Chen , Chaochao Wei , Ziqi Zhang , Zhongkai Wu , Qiyue Luo , Liang Ming , Long Zhang , Chuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561
Yuhan Wu , Qing Zhao , Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
Jing Guo . Stacking solid-state electrolyte and aluminum pellets for anode-free solid-state batteries. Chinese Chemical Letters, 2025, 36(5): 110764-. doi: 10.1016/j.cclet.2024.110764
Yue Zheng , Tianpeng Huang , Pengxian Han , Jun Ma , Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390
Xin Li , Ling Zhang , Yunyan Fan , Shaojing Lin , Yong Lin , Yongsheng Ying , Meijiao Hu , Haiying Gao , Xianri Xu , Zhongbiao Xia , Xinchuan Lin , Junjie Lu , Xiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776
Tianyi Hou , Yunhui Huang , Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313
Chengmin Hu , Pingxuan Liu , Ziyang Song , Yaokang Lv , Hui Duan , Li Xie , Ling Miao , Mingxian Liu , Lihua Gan . Tailor-made overstable 3D carbon superstructures towards efficient zinc-ion storage. Chinese Chemical Letters, 2025, 36(4): 110381-. doi: 10.1016/j.cclet.2024.110381
Mengxiao Yang , Haicheng Huang , Shiyi Shen , Xinxin Liu , Mengyu Liu , Jiahua Guo , Fenghui Yang , Baoli Zha , Jiansheng Wu , Sheng Li , Fengwei Huo . Flexible aqueous zinc-ion battery with low-temperature resistant leather gel electrolyte. Chinese Chemical Letters, 2025, 36(6): 109988-. doi: 10.1016/j.cclet.2024.109988
Tengfei Yang , Jingshuai Xiao , Xiao Sun , Yan Song , Chaozheng He . Facilitating the polysulfides conversion kinetics by porous LaOCl nanofibers towards long-cycling lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 109691-. doi: 10.1016/j.cclet.2024.109691
Qianqian Song , Yunting Zhang , Jianli Liang , Si Liu , Jian Zhu , Xingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797
Yang Deng , Yitao Ouyang , Chao Han . Constriction-susceptible makes fast cycling of lithium metal in solid-state batteries: Silicon as an example. Chinese Journal of Structural Chemistry, 2024, 43(7): 100276-100276. doi: 10.1016/j.cjsc.2024.100276
Qian Wang , Ting Gao , Xiwen Lu , Hangchao Wang , Minggui Xu , Longtao Ren , Zheng Chang , Wen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887