Application of Langlois' reagent (NaSO2CF3) in C–H functionalisation
-
* Corresponding author.
E-mail address: liwanmei@hznu.edu.cn (W. Li).
1 These authors contributed equally to this work.
Citation:
Jiabin Shen, Jun Xu, Lei He, Chenfeng Liang, Wanmei Li. Application of Langlois' reagent (NaSO2CF3) in C–H functionalisation[J]. Chinese Chemical Letters,
;2022, 33(3): 1227-1235.
doi:
10.1016/j.cclet.2021.09.005
J. R. Pinchman, D. L. Boger, J. Med. Chem. 56 (2013) 4116–4124.
doi: 10.1021/jm4004494
J. L. Gilmore, J. E. Sheppeck, S. H. Watterson, et al., J. Med. Chem. 59 (2016) 6248–6264.
doi: 10.1021/acs.jmedchem.6b00373
L. Yu, M. Huang, T. Xu, et al., Eur. J. Med. Chem. 126 (2017) 1107–1117.
doi: 10.1016/j.ejmech.2016.12.006
J. Wu, Y. Cheng, J. Lan, D. Wu, S. Qian, J. Am. Chem. Soc. 138 (2016), 12803–12812.
doi: 10.1021/jacs.6b03890
S. Li, J.A. Ma, Chem. Soc. Rev. 44 (2015) 7439–7448.
doi: 10.1039/C5CS00342C
N. Meng, Y. Lv, Q. Liu, et al., Chin. Chem. Lett. 32 (2021) 258–262.
doi: 10.1016/j.cclet.2020.11.034
R. Tao, X.J. Yin, K.H. Wang, et al., Chin. Chem. Lett. 26 (2015) 1046–1049.
doi: 10.1016/j.cclet.2015.04.015
K. Muller, C. Faeh, F. Diederich, Science 317 (2007) 1881–1886.
doi: 10.1126/science.1131943
M. Hird, Chem. Soc. Rev. 36 (2007) 2070–2095.
doi: 10.1039/b610738a
K.L. Kirk, Org. Process Res. Dev. 12 (2008) 305–321.
doi: 10.1021/op700134j
H. Mei, A.M. Remete, Y. Zou, et al., Chin. Chem. Lett. 31 (2020) 2401–2413.
doi: 10.1016/j.cclet.2020.03.050
T. Furuya, A.S. Kamlet, T. Ritter, Nature 473 (2011) 470–477.
doi: 10.1038/nature10108
O.A. Tomashenko, V.V. Grushin, Chem. Rev. 111 (2011) 4475–4521.
doi: 10.1021/cr1004293
T. Umemoto, Chem. Rev. 96 (1996) 1757–1777.
doi: 10.1021/cr941149u
L. Ting, R. Shou, H. Mei, C. Cheng, S. Cai, Chin. Chem. Lett. 21 (2010) 1247–1250.
F. Bull. Swarts Acad. Roy. Belg. 24 (1892) 309–311.
J.H. Simons, C.J. Lewis, J. Am. Chem. Soc. 60 (1938) 492–493.
doi: 10.1021/ja01269a507
T. Furuya, A.S. Kamlet, T. Ritter, Nature 437 (2011) 470–477.
doi: 10.1038/nature10108
O.A. Tomashenko, E.C. Escudero-Adán, M.M. Belmonte, V.V. Grushin, Angew. Chem. Int. Ed. 50 (2011) 7655–7659.
doi: 10.1002/anie.201101577
Y. Ye, M.S. Sanford, J. Am. Chem. Soc. 134 (2012) 9034–9037.
doi: 10.1021/ja301553c
K. Zhang, X.H. Xu, F.L. Qing, J. Org. Chem. 80 (2015) 7658–7665.
doi: 10.1021/acs.joc.5b01295
J. Hong, G. Wang, L. Huo, C. Zheng, Chin. J. Chem. 35 (2017) 1761–1767.
doi: 10.1002/cjoc.201700311
Z. Bazyar, M. Hosseini-Sarvari, Org. Process Res. Dev. 23 (2019) 2345–2353.
doi: 10.1021/acs.oprd.9b00225
D.H. Yu, J.N. Shao, R.X. He, M. Li, Chin. Chem. Lett. 26 (2015) 564–566.
doi: 10.1016/j.cclet.2014.12.017
R.P. Bhaskaran, B.P. Babu, Adv. Synth. Catal. 362 (2020) 5219–5237.
doi: 10.1002/adsc.202000996
X. Pan, H. Xia, J. Wu, Org. Chem. Front. 3 (2016) 1163–1185.
doi: 10.1039/C6QO00153J
Q. Lefebvre, Synlett. 28 (2017) 19–23.
S. Barata-Vallejo, A. Postigo, Chem. Eur. J. 26 (2020) 11065–11084.
doi: 10.1002/chem.202000856
O.A. Tomashenko, V.V. Grushin, Chem. Rev. 111 (2011) 4475–4521.
doi: 10.1021/cr1004293
A. Studer, Angew. Chem. Int. Ed. 51 (2012) 8950–8958.
doi: 10.1002/anie.201202624
C. Zhang, Adv. Synth. Catal. 356 (2014) 2895–2906.
doi: 10.1002/adsc.201400370
M. Tordeux, B.R. Langlois, C. Wakselman, J. Org. Chem. 54 (1989) 2452–2453.
doi: 10.1021/jo00271a041
B.R. Langlois, E. Laurent, N. Roidot, Tetrahedron Lett. 32 (1991) 7525–7528.
doi: 10.1016/0040-4039(91)80524-A
B.R. Langlois, T. Billard, J.C. Mulatier, C. Yezegue-lian, J. Fluor. Chem. 128 (2007) 851–856.
doi: 10.1016/j.jfluchem.2007.04.012
H.P. Cao, Q.Y. Chen, J. Fluor. Chem. 128 (2007) 1187–1190.
doi: 10.1016/j.jfluchem.2007.04.018
R.C. Simon, E. Busto, N. Richter, et al., Nat. Commun. 7 (2016) 13323.
doi: 10.1038/ncomms13323
J. Xu, K. Cheng, C. Shen, et al., ChemCatChem 10 (2018) 965–970.
doi: 10.1002/cctc.201701596
X. Shi, X. Li, L. Ma, D. Shi, Catalysts 9 (2019) 278–291.
doi: 10.3390/catal9030278
L.H. Wu, K. Zhao, Z.L. Shen, T.P. Loh, Org. Chem. Front. 4 (2017) 1872–1875.
doi: 10.1039/C7QO00416H
H. B. Yang, N. Selander, Org. Biomol. Chem. 15 (2017) 1771–1775.
doi: 10.1039/C7OB00203C
C. Shen, J. Xu, B. Ying, P. Zhang, ChemCatChem 8 (2016) 3560–3564.
doi: 10.1002/cctc.201601068
S.Z. Sun, H. Xu, H.X. Dai, Chin. Chem. Lett. 30 (2019) 969–972.
doi: 10.1016/j.cclet.2019.02.011
Y. Zhu, J. Tian, X. Gu, Y. Wang, J. Org. Chem. 83 (2018) 13267–13275.
doi: 10.1021/acs.joc.8b02073
G.B. Li, C. Zhang, Chun Song, Y.D. Ma, Beilstein J. Org. Chem. 14 (2018) 155–181.
doi: 10.3762/bjoc.14.11
Y.A. Konik, M. Kudrjashova, N. Konrad, et al., Org. Biomol. Chem. 15 (2017) 4635–4643.
doi: 10.1039/C7OB00680B
Q. Wang, P. Shi, R. Zeng, RSC Adv. 8 (2018) 25961–25965.
doi: 10.1039/C8RA04088E
J. Xu, L. Qiao, J. Shen, et al., Org. Lett. 19 (2017) 5661–5664.
doi: 10.1021/acs.orglett.7b02823
C. Li, K. Suzuki, K. Yamaguchi, N. Mizuno, New J. Chem. 41 (2017) 1417–1420.
doi: 10.1039/C6NJ03654F
H.L. Huang, H. Yan, G.L. Gao, C. Yang, W. Xia, Asian J. Org. Chem. 7 (2015) 674–677.
doi: 10.1002/ajoc.201500096
D. Liang, Q. Dong, P. Xu, et al., J. Org. Chem. 83 (2018) 11978–11986.
doi: 10.1021/acs.joc.8b01861
F. Gao, F.X. Meng, J.Y. Du, S. Zhang, H.L. Huang, Eur. J. Org. Chem. 2020 (2020) 209–212.
doi: 10.1002/ejoc.201901636
N. Meng, L. Wang, Q. Liu, et al., J. Org. Chem. 85 (2020) 6888–6896.
doi: 10.1021/acs.joc.9b03505
L. H. Lu, Z. Wang, W. Xia, et al., Chin. Chem. Lett. 30 (2019) 1237–1240.
doi: 10.1016/j.cclet.2019.04.033
Z. Lu, O. Hennis, J. Gentry, B. Xu, G.B. Hammond, Org. Lett. 22 (2020) 4383–4388.
doi: 10.1021/acs.orglett.0c01395
D. Wang, G.J. Deng, S. Chen, H. Gong, Green Chem. 18 (2016) 5967–5970.
doi: 10.1039/C6GC02000C
L. Wang, Y. Zhang, F. Li, et al., Adv. Synth. Catal. 360 (2018) 3969–3977.
doi: 10.1002/adsc.201800863
J.M. Lear, J.Q. Buquoi, X. Gu, et al., Chem. Commun. 55 (2019) 8820–8823.
doi: 10.1039/c9cc03498f
Z. Wu, Y. He, C. Ma, et al., Asian J. Org. Chem. 5 (2016) 724–728.
doi: 10.1002/ajoc.201600128
X. Xua, F. Liu, Org. Chem. Front. 4 (2017) 2306–2310.
doi: 10.1039/C7QO00635G
Z. Tan, S. Zhang, Y. Zhang, et al., J. Org. Chem. 82 (2017) 9384–9399.
doi: 10.1021/acs.joc.7b01359
Y. Yang, L. Xu, S. Yu, et al., Chem. Eur. J. 22 (2016) 858–863.
doi: 10.1002/chem.201504790
S. Lu, W. Chen, Q. Shen, Chin. Chem. Lett. 30 (2019) 2279–2281.
doi: 10.1016/j.cclet.2019.07.060
Y. Guo, M.W. Huang, X.L. Fu, et al., Chin. Chem. Lett. 28 (2017) 719–728.
doi: 10.1016/j.cclet.2017.02.006
M.J. Bu, G.P. Lu, C. Cai, Org. Chem. Front. 4 (2017) 266–270.
doi: 10.1039/C6QO00622A
D.W. Sun, X. Jiang, M. Jiang, Y. Lin, J.T. Liu, Eur. J. Org. Chem. (2017) 3505–3511.
doi: 10.1002/ejoc.201700661
Q. Yan, L. Jiang, W. Yi, Q. Liu, W. Zhang, Adv. Synth. Catal. 359 (2017) 2471–2480.
doi: 10.1002/adsc.201700270
X. Zhao, A. Wei, B. Yang, et al., J. Org. Chem. 82 (2017) 9175–9181.
doi: 10.1021/acs.joc.7b01226
Z. Q. Liu, D. Liu, J. Org. Chem. 82 (2017) 1649–1656.
doi: 10.1021/acs.joc.6b02812
K. Lu, X. Wei, Q. Li, et al., Org. Chem. Front. 6 (2019) 3766–3770.
doi: 10.1039/c9qo00940j
Q. Lefebvre, N. Hoffmann, M. Rueping, Chem. Commun. 52 (2016) 2493–2496.
doi: 10.1039/C5CC09881E
S. Corsico, M. Fagnoni, D. Ravelli, Photochem. Photobiol. Sci. 16 (2017) 1375–1380.
doi: 10.1039/C7PP00179G
S. A. Miller, B. van Beek, T. A. Hamlin, et al., J. Fluor. Chem. 214 (2018) 94–100.
doi: 10.1016/j.jfluchem.2018.08.005
Q. Zhou, S. Xu, R. Zhang, Tetrahedron Lett. 60 (2019) 734–738.
doi: 10.1016/j.tetlet.2019.02.003
A. Murugan, V. N. Babu, A. Polu, et al., J. Org. Chem. 84 (2019) 7796–7803.
doi: 10.1021/acs.joc.9b00676
Z. Wei, S. Qi, Y. Xu, et al., Adv. Synth. Catal. 361 (2019) 5490–5498.
doi: 10.1002/adsc.201900885
Z. Bazyar, M. Hosseini-Sarvari, Org. Process Res. Dev. 23 (2019) 2345–2353.
doi: 10.1021/acs.oprd.9b00225
Y. Wang, X. Wang, M. Antonietti, Angew. Chem. Int. Ed. 51 (2012) 68–89.
doi: 10.1002/anie.201101182
I. Ghosh, J. Khamrai, A. Savateev, et al., Science 365 (2019) 360–366.
doi: 10.1126/science.aaw3254
C. Xia, K. Wang, G. Wang, G. Duan, Org. Biomol. Chem. 16 (2018) 2214–2218.
C. Tian, Q. Wang, X. Wang, G. An, G. Li, J. Org. Chem. 84 (2019) 14241–14247.
doi: 10.1021/acs.joc.9b01987
L. Zhao, P. Li, H. Zhang, L. Wang, Org. Chem. Front. 6 (2019) 87–93.
doi: 10.1039/c8qo01079j
A. Abramov, H. Vernickel, C. Saldías, D. D. Díaz, Molecules 24 (2019) 29–40.
Z. Jia, Y. Yuan, X. Zong, B. Wu, J. Ma, Chin. Chem. Lett. 30 (2019) 1488–1494.
L. Li, X. Mu, W. Liu, et al., J. Am. Chem. Soc. 138 (2016) 5809–5812.
doi: 10.1021/jacs.6b02782
N. Lin, Y. Li, X. Hao, et al., J. Fluor. Chem. 214 (2018) 42–47.
J. Wang, B. Sun, L. Zhang, et al., Asian J. Org. Chem. 8 (2019) 1942–1946.
doi: 10.1002/ajoc.201900414
L. Zhao, P. Li, X. Xie, L. Wang, Org. Chem. Front. 5 (2018) 1689–1697.
L. Zou, P. Li, B. Wang, L. Wang, Chem. Commun. 55 (2019) 3437–3470.
I. Abdiaj, C. Bottecchia, J. Alcazar, T. Noёl, Synthesis 49 (2017) 4978–4985.
Y. Qiu, A. Scheremetjew, L. Ackermann, J. Am. Chem. Soc. 141 (2019) 2731–2738.
doi: 10.1021/jacs.8b13692
T. Gieshoff, A. Kehl, D. Schollmeyer, K.D. Moeller, S.R. Waldvogel, J. Am. Chem. Soc. 139 (2017) 12317–12324.
doi: 10.1021/jacs.7b07488
B.K. Peters, K.X. Rodriguez, S.H. Reisberg, et al., Science 363 (2019) 838–845.
doi: 10.1126/science.aav5606
H. Hong, Y. Li, L. Chen, J. Org. Chem. 84 (2019) 5980–5986.
doi: 10.1021/acs.joc.9b00766
Y. Deng, F. Lu, S. You, et al., Chin. J. Chem. 37 (2019) 817–820.
doi: 10.1002/cjoc.201900168
Y. Qiu, A. Scheremetjew, L.H. Finger, L. Ackermann, Chem. Eur. J. 26 (2020) 3241–3246.
doi: 10.1002/chem.201905774
C. Xua, Y. Liua, H. Liua, et al., Tetrahedron Lett. 61 (2020) 152226–152230.
H. Zhang, W. Wu, Y. Mo, Comput. Theor. Chem. 1116 (2017) 50–58.
doi: 10.1016/j.comptc.2017.02.005
G. Choi, G.S. Lee, B. Park, D. Kim, S.H. Hong, Angew. Chem. Int. Ed. 60 (2021) 5467–5474.
doi: 10.1002/anie.202012263
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650
Ao Sun , Zipeng Li , Shuchun Li , Xiangbao Meng , Zhongtang Li , Zhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972
Boqiang Wang , Yongzhuo Xu , Jiajia Wang , Muyang Yang , Guo-Jun Deng , Wen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
Zhigang Zeng , Changzhou Liao , Lei Yu . Molecules for COVID-19 treatment. Chinese Chemical Letters, 2024, 35(7): 109349-. doi: 10.1016/j.cclet.2023.109349
Xinlong Han , Huiying Zeng , Chao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817
Yuhan Liu , Jingyang Zhang , Gongming Yang , Jian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790
Tingting Liu , Pengfei Sun , Wei Zhao , Yingshuang Li , Lujun Cheng , Jiahai Fan , Xiaohui Bi , Xiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058
Yuwen Zhu , Xiang Deng , Yan Wu , Baode Shen , Lingyu Hang , Yuye Xue , Hailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172