Contribution of redox-active properties of compost-derived humic substances in hematite bioreduction
-
* Corresponding author.
E-mail address: hexs82@126.com (X.-S. He).
Citation:
Chao Yang, Lin-Xiao Hou, Bei-Dou Xi, Li-An Hou, Xiao-Song He. Contribution of redox-active properties of compost-derived humic substances in hematite bioreduction[J]. Chinese Chemical Letters,
;2022, 33(5): 2731-2735.
doi:
10.1016/j.cclet.2021.08.115
H. Wang, J. Xu, H. Yu, et al., Renew. Sust. Energ. Rev. 52 (2015) 1881-1889.
doi: 10.1016/j.rser.2015.08.038
Y. Wang, X. Zhang, W. Liao, et al., Waste Manage. 77 (2018) 252-267.
doi: 10.1016/j.wasman.2018.04.003
S. Gui, L. Zhao, Z. Zhang, Waste Manag. 84 (2019) 310-319.
doi: 10.1016/j.wasman.2018.12.006
J. Hong, X. Li, J. Zhao, Waste Manage. 30 (2010) 2362-2369.
doi: 10.1016/j.wasman.2010.03.038
L. Zheng, J. Song, C. Li, et al., Renew. Sust. Energ. Rev. 36 (2014) 135-148.
doi: 10.1016/j.rser.2014.04.049
Z. Li, H. Lu, L. Ren, et al., Chemosphere 93 (2013) 1247-1257.
doi: 10.1016/j.chemosphere.2013.06.064
X. He, B. Xi, D. Cui, et al., J. Hazard. Mater. 268 (2014) 256-263.
doi: 10.1016/j.jhazmat.2014.01.030
Y. Wei, Y. Zhao, Y. Fan, et al., Bioresour. Technol. 241 (2017) 134-141.
doi: 10.1016/j.biortech.2017.05.099
M. Mustafa, Y. Liu, Z. Duan, et al., J. Hazard. Mater. 327 (2017) 35-43.
doi: 10.1016/j.jhazmat.2016.11.046
B. Gong, X. Zhong, X. Chen, et al., Chemosphere 273 (2021) 129729.
doi: 10.1016/j.chemosphere.2021.129729
X. Liu, H. Lv, H. Xu, Chin. Chem. Lett. 26 (2015) 205-209.
doi: 10.1016/j.cclet.2014.10.004
S. Bone, J. Dynes, J. Cliff, et al., Proc. Natl. Acad. Sci. U. S. A. 114 (2017) 711-716.
doi: 10.1073/pnas.1611918114
P. Castaldi, D. Demurtas, M. Silvetti, et al., J. Environ. Manage. 192 (2017) 39-47.
doi: 10.1016/j.jenvman.2017.01.032
O. Akhtar, H. Kehri, I. Zoomi, Ecotox. Environmen. Safe. 201 (2020) 110869.
doi: 10.1016/j.ecoenv.2020.110869
X. He, B. Xi, W. Li, et al., J. Chromatogr. A 1420 (2015) 83-91.
doi: 10.1016/j.chroma.2015.09.093
Y. Yuan, X. He, B. Xi, et al., Chemosphere 208 (2018) 77-83.
doi: 10.1016/j.chemosphere.2018.05.160
C. Poggenburg, R. Mikutta, M. Sander, et al., Chem. Geol. 447 (2016) 133-147.
doi: 10.1016/j.chemgeo.2016.09.031
C. Gao, M. Sander, S. Agethen, et al., Geochim. Cosmochim. Ac. 245 (2019) 266-277.
doi: 10.1016/j.gca.2018.11.004
L. Klüpfel, A. Piepenbrock, A. Kappler, et al., Nat. Geosci. 7 (2014) 195-200.
doi: 10.1038/ngeo2084
D. Adhikari, Q. Zhao, K. Das, et al., Geochim. Cosmochim. Ac. 212 (2017) 221-233.
doi: 10.1016/j.gca.2017.06.017
D. Lovley, J. Coates, E. Blunt-Harris, et al., Nature 382 (1996) 445-448.
doi: 10.1038/382445a0
E. Roden, A. Kappler, I. Bauer, et al., Nat. Geosci. 3 (2010) 417-421.
doi: 10.1038/ngeo870
A. Piepenbrock, C. Schröder, A. Kappler, Environ. Sci. Technol. 48 (2014) 1656-1664.
doi: 10.1021/es404497h
C. Yang, M. Zheng, Y. Zhang, et al., Chin. Chem. Lett. 31 (2020) 2693-2697.
doi: 10.1016/j.cclet.2020.04.001
S. Wu, G. Fang, Y. Wang, et al., Environ. Sci. Technol. 51 (2017) 9709-9717.
doi: 10.1021/acs.est.7b01854
X. He, C. Yang, S. You, et al., Sci. Total Environ. 665 (2019) 920-928.
doi: 10.1016/j.scitotenv.2019.02.164
J. Thieme, I. McNult, S. Vogt, et al., Environ. Sci. Technol. 41 (2007) 6885-6889.
doi: 10.1021/es0726254
M. Thevenot, M. Dignac, C. Rumpel, Soil Biol. Biochem. 42 (2010) 1200-1211.
doi: 10.1016/j.soilbio.2010.03.017
K. Eusterhues, A. Hädrich, J. Neidhardt, et al., Biogeosciences 18 (2014) 4953-4966.
doi: 10.5194/bg-11-4953-2014
D. Adhikari, S. Poulson, S. Sumaila, et al., Chem. Geol. 430 (2016) 13-20.
doi: 10.1016/j.chemgeo.2016.03.013
J. Wang, A. Li, Y. Zhou, L. Xu, Chin. Chem. Lett. 20 (2009) 1478-1482.
doi: 10.1016/j.cclet.2009.07.013
D. Said-Pullicino, K. Kaiser, G. Guggenberger, et al., Chemosphere 66 (2007) 2166-2176.
doi: 10.1016/j.chemosphere.2006.09.010
M. Bartoszek, J. Polak, W. Sułkowski, Chemosphere 73 (2008) 1465-1470.
doi: 10.1016/j.chemosphere.2008.07.051
R. Cory, D. McKnight, Environ. Sci. Technol. 39 (2005) 8142-8149.
doi: 10.1021/es0506962
M. Kleber, M. Johnson, Adv. Agron. 106 (2010) 77-142.
N. Ratasuk, M. Nanny, Environ. Sci. Technol. 41 (2007) 7844-7850.
doi: 10.1021/es071389u
F. Einsiedl, B. Mayer, T. Schäfer, Environ. Sci. Technol. 42 (2008) 2439-2444.
doi: 10.1021/es7025455
E. Melton, E. Swanner, S. Behrens, et al., Nat. Rev. Microbiol. 12 (2014) 797-808.
doi: 10.1038/nrmicro3347
L. Shi, H. Dong, G. Reguera, et al., Nat. Rev. Microbiol. 14 (2016) 651-662.
doi: 10.1038/nrmicro.2016.93
M. Bernai, C. Paredes, M. Sánchez-Monedero, et al., Bioresour. Technol. 63 (1988) 91-99.
X. Gomez, D. Blanco, A. Lobato, et al., Biodegradation 22 (2011) 623-635.
doi: 10.1007/s10532-010-9436-y
L. Fialho, W. Lopes-da-Silva, D. Milori, et al., Bioresour. Technol. 101 (2010) 1927-1934.
doi: 10.1016/j.biortech.2009.10.039
Yang Chao , Zheng Ming-Xia , Zhang Yuan , Xi Bei-Dou , Tian Zai-Feng , He Xiao-Song . Bioreduction of hexavalent chromium: Effect of compost-derived humic acids and hematite. Chinese Chemical Letters, 2020, 31(10): 2693-2697. doi: 10.1016/j.cclet.2020.04.001
Tong Wen NI , Yu Hui YANG . APPLICATION OF SURFACE-ENHANCED RAMAN SPECTORSCOPY FOR CHARACTERIZING HUMIC SUBSTANCES. Chinese Chemical Letters, 1993, 4(4): 361-362.
Zhao Zeng MA , Lian Ji JIN . STUDY ON THE FORMATION OF BLACK PATINA ON BRONZE MIRRORS INDUCED BY HUMIC ACID. Chinese Chemical Letters, 1993, 4(1): 89-92.
Yang Zhou , Jianpeng Hu , Yuan Gao , Yang Song , Su-Yan Pang , Jin Jiang . Unrecognized role of humic acid as a reductant in accelerating fluoroquinolones oxidation by aqueous permanganate. Chinese Chemical Letters, 2022, 33(1): 447-451. doi: 10.1016/j.cclet.2021.06.036
YANG Chao , HE Xiao-Song , GAO Ru-Tai , XI Bei-Dou , HUANG Cai-Hong , ZHANG Hui , TAN Wen-Bing , LI Dan . Effect of Compositional and Structural Evolution of Size-fractionated Dissolved Organic Matter on Electron Transfer Capacity during Composting. Chinese Journal of Analytical Chemistry, 2017, 45(4): 579-586. doi: 10.11895/j.issn.0253-3820.160752
TANG Zhu-Rui , HUANG Cai-Hong , TAN Wen-Bing , HE Xiao-Song , ZHANG Hui , LI Dan , XI Bei-Dou . Electron Transfer Capacities of Dissolved Organic Matter Derived from Swine Manure Based on Eletrochemical Method. Chinese Journal of Analytical Chemistry, 2018, 46(3): 422-431. doi: 10.11895/j.issn.0253-3820.171436
Ma Changbei , Chen Mingjian , Liu Haisheng , Wu Kefeng , He Hailun , Wang Kemin . A rapid method for the detection of humic acid based on the poly (thymine)-templated copper nanoparticles. Chinese Chemical Letters, 2018, 29(1): 136-138. doi: 10.1016/j.cclet.2017.09.012
Jin Nan Wang , Ai Min Li Yang Zhou , Li Xu . Study on the influence of humic acid of different molecular weight on basic ion exchange resin's adsorption capacity. Chinese Chemical Letters, 2009, 20(12): 1478-1482. doi: 10.1016/j.cclet.2009.07.013
Jing Li , Zhuanjun Zhao , Yiran Song , Yang You , Jie Li , Xiuwen Cheng . Synthesis of Mg(Ⅱ) doped ferrihydrite-humic acid coprecipitation and its Pb(Ⅱ)/Cd(Ⅱ) ion sorption mechanism. Chinese Chemical Letters, 2021, 32(10): 3231-3236. doi: 10.1016/j.cclet.2021.03.086
Cai Qin QIN , Ling XIAO , Yu Min DU . Chitosan-supported Borohydride Reducing Agent. Chinese Chemical Letters, 2001, 12(12): 1051-1052.
Boyao Xie , Xingming Ning , Shuoming Wei , Jia Liu , Jimei Zhang , Xiaoquan Lu . A co-activation strategy for enhancing the performance of hematite in photoelectrochemical water oxidation. Chinese Chemical Letters, 2021, 32(7): 2279-2282. doi: 10.1016/j.cclet.2021.01.003
Kang Xu , Zhi rui Guo , Ning Gu . Facile synthesis of gold nanoplates by thermally reducing AuCl4- with aniline. Chinese Chemical Letters, 2009, 20(2): 241-244. doi: 10.1016/j.cclet.2008.10.053
Qin He , Zhang Hong , Zhou Xiaoteng , Gu Danfei , Li Lingxiao , Kan Chengyou . Preparation and reducing-responsive property of a novel functional polyurethane nanoemulsion. Chinese Chemical Letters, 2020, 31(1): 292-294. doi: 10.1016/j.cclet.2019.04.015
Lian Peng Tong , Jing Nan Cui , Wei Min Ren , Xing Yong Wang , Xu Hong Qian . Asymmetric bioreduction of substituted acenaphthenequinones using plant enzymatic systems: A novel strategy for the preparation of (+)-and(-)-mono hydroxyacenaphthenones. Chinese Chemical Letters, 2008, 19(10): 1179-1182. doi: 10.1016/j.cclet.2008.06.037
Cai-Sheng Wu , Ying Jin , Jin-Lan Zhang , Yan Ren , Zhi-Xin Jia . Simultaneous determination of seven prohibited substances in cosmetic products by liquid chromatography-tandem mass spectrometry. Chinese Chemical Letters, 2013, 24(6): 509-511.
Li Ming , Xiao Liang , Wang Duo , Dong Haoyang , Deng Bohua , Liu Jinping . Surface carboxyl groups enhance the capacities of carbonaceous oxygen electrodes for aprotic lithium-oxygen batteries: A direct observation on binder-free electrodes. Chinese Chemical Letters, 2019, 30(12): 2328-2332. doi: 10.1016/j.cclet.2019.07.011
Zhu Yaodong , Qian Qinfeng , Fan Guozheng , Zhu Zhili , Wang Xin , Li Zhaosheng , Zou Zhigang . Insight into the influence of high temperature annealing on the onset potential of Ti-doped hematite photoanodes for solar water splitting. Chinese Chemical Letters, 2018, 29(6): 791-794. doi: 10.1016/j.cclet.2018.01.022
Wang Miao , Wang Meng , Fu Yanming , Shen Shaohua . Cobalt oxide and carbon modified hematite nanorod arrays for improved photoelectrochemical water splitting. Chinese Chemical Letters, 2017, 28(12): 2207-2211. doi: 10.1016/j.cclet.2017.11.037
Zhang Ting , Li Cuicui , Wang Wei , Guo Zhaoqi , Pang Aimin , Ma Haixia . Construction of Three-Dimensional Hematite/Graphene with Effective Catalytic Activity for the Thermal Decomposition of CL-20. Acta Physico-Chimica Sinica, 2020, 36(6): 1905048-0. doi: 10.3866/PKU.WHXB201905048