Dynamics and biological relevance of epigenetic N6-methyladenine DNA modification in eukaryotic cells
-
* Corresponding authors.
E-mail addresses: changjun@hnu.edu.cn (C. You), xiaoxiad@hnu.edu.cn (X. Dai).
Citation:
Yuwei Sheng, Meijuan Zhou, Changjun You, Xiaoxia Dai. Dynamics and biological relevance of epigenetic N6-methyladenine DNA modification in eukaryotic cells[J]. Chinese Chemical Letters,
;2022, 33(5): 2253-2258.
doi:
10.1016/j.cclet.2021.08.109
Z.K. O'Brown, E.L. Greer, Adv. Exp. Med. Biol. 945 (2016) 213-246.
doi: 10.1007/978-3-319-43624-1_10
L.M. Iyer, S. Abhiman, L. Aravind, Prog. Mol. Biol. Transl. Sci. 101 (2011) 25-104.
doi: 10.1016/B978-0-12-387685-0.00002-0
Y. Feng, N.B. Xie, W.B. Tao, et al., CCS Chem. 3 (2021) 994-1008.
doi: 10.31635/ccschem.020.202000286
A. Breiling, F. Lyko, Epigenet. Chromatin 8 (2015) 24.
doi: 10.1186/s13072-015-0016-6
J. Casadesus, Adv. Exp. Med. Biol. 945 (2016) 35-61.
doi: 10.1007/978-3-319-43624-1_3
Y. Fu, G.Z. Luo, K. Chen, et al., Cell 161 (2015) 879-892.
doi: 10.1016/j.cell.2015.04.010
G. Zhang, H. Huang, D. Liu, et al., Cell 161 (2015) 893-906.
doi: 10.1016/j.cell.2015.04.018
E.L. Greer, M.A. Blanco, L. Gu, et al., Cell 161 (2015) 868-878.
doi: 10.1016/j.cell.2015.04.005
T.P. Wu, T. Wang, M.G. Seetin, et al., Nature 532 (2016) 329-333.
doi: 10.1038/nature17640
C.L. Xiao, S. Zhu, M. He, et al., Mol. Cell 71 (2018) 306-318.
doi: 10.1016/j.molcel.2018.06.015
C. Zhou, C. Wang, H. Liu, et al., Nat. Plants 4 (2018) 554-563.
doi: 10.1038/s41477-018-0214-x
D.H. Yuan, J.F. Xing, M.W. Luan, et al., Front. Genet. 11 (2020) 736.
doi: 10.3389/fgene.2020.00736
J. Karanthamalai, A. Chodon, S. Chauhan, G. Pandi, Plants 9 (2020) 247.
doi: 10.3390/plants9020247
S. Zhang, B. Li, K. Du, et al., Biochimie 168 (2020) 134-143.
doi: 10.1016/j.biochi.2019.10.018
K. Du, S. Zhang, W. Chen, et al., Arch. Biochem. Biophys. 675 (2019) 108120.
doi: 10.1016/j.abb.2019.108120
K. Du, X. Zhang, Z. Zou, et al., DNA Repair 78 (2019) 81-90.
doi: 10.1016/j.dnarep.2019.03.015
P. Ji, X. Wang, N. Xie, Y. Li, Stem Cells Int. 2018 (2018) 3256524.
doi: 10.1155/2018/3256524.
Q.X. Song, Z.D. Ding, J.H. Liu, Y. Li, H.J. Wang, J. Mol. Model. 19 (2013) 1089-1098.
doi: 10.1007/s00894-012-1628-4
G.Z. Luo, Z. Hao, L. Luo, et al., Genome Biol. 19 (2018) 200.
doi: 10.1186/s13059-018-1573-3
G.Z. Luo, C. He, Nat. Struct. Mol. Biol. 24 (2017) 503-506.
doi: 10.1038/nsmb.3412
G.Z. Luo, M.A. Blanco, E.L. Greer, C. He, Y. Shi, Nat. Rev. Mol. Cell. Biol. 16 (2015) 705-710.
doi: 10.1038/nrm4076
B.F. Vanyushin, A.N. Belozersky, N.A. Kokurina, D.X. Kadirova, Nature 218 (1968) 1066-1067.
doi: 10.1038/2181066a0
D.B. Dunn, J.D. Smith, Nature 175 (1955) 336-337.
doi: 10.1038/175336a0
D.B. Dunn, J.D. Smith, Biochem. J. 68 (1958) 627-636.
doi: 10.1042/bj0680627
K.R. Pomraning, K.M. Smith, M. Freitag, Methods 47 (2009) 142-150.
doi: 10.1016/j.ymeth.2008.09.022
W. Huang, J. Xiong, Y. Yang, et al., RSC Adv. 5 (2015) 64046-64054.
doi: 10.1039/C5RA05307B
B. Liu, H. Wang, Adv. Exp. Med. Biol. 1280 (2021) 83-95.
doi: 10.1007/978-3-030-51652-9_6
K. Boulias, E.L. Greer, Methods Mol. Biol. 2198 (2021) 79-90.
doi: 10.1007/978-1-0716-0876-0_7
B.F. Yuan, Chem. Res. Toxicol. 33 (2020) 695-708.
doi: 10.1021/acs.chemrestox.9b00372
M.D. Lan, B.F. Yuan, Y.Q. Feng, Chin. Chem. Lett. 30 (2019) 1-6.
doi: 10.1016/j.cclet.2018.04.021
C. Qi, J. Ding, B. Yuan, Y. Feng, Chin. Chem. Lett. 30 (2019) 1618-1626.
doi: 10.1016/j.cclet.2019.02.005
C. Qi, H. Jiang, J. Xiong, B. Yuan, Y. Feng, Chin. Chem. Lett. 30 (2019) 553-557.
doi: 10.1016/j.cclet.2018.11.029
J. Cai, D. Wang, R. Chen, et al., Front. Bioeng. Biotechnol. 8 (2020) 502.
doi: 10.3389/fbioe.2020.00502
H.T. Wang, F.H. Xiao, G.H. Li, Q.P. Kong, Epigenet. Chromatin 13 (2020) 8.
doi: 10.1186/s13072-020-00330-2
J.A.H. Maier, A. Jeltsch, Methods Mol. Biol. 1867 (2018) 29-41.
doi: 10.1007/978-1-4939-8799-3_3
B. Liu, X. Liu, W. Lai, H. Wang, Anal. Chem. 89 (2017) 6202-6209.
doi: 10.1021/acs.analchem.7b01152
M.J. Koziol, C.R. Bradshaw, G.E. Allen, et al., Nat. Struct. Mol. Biol. 23 (2016) 24-30.
doi: 10.1038/nsmb.3145
J. Liu, Y. Zhu, G.Z. Luo, et al., Nat. Commun. 7 (2016) 13052.
doi: 10.1038/ncomms13052
B. Yao, Y. Cheng, Z. Wang, et al., Nat. Commun. 8 (2017) 1122.
doi: 10.1038/s41467-017-01195-y
S. Schiffers, C. Ebert, R. Rahimoff, et al., Angew. Chem. Int. Ed. 56 (2017) 11268-11271.
doi: 10.1002/anie.201700424
Z.K. O'Brown, K. Boulias, J. Wang, et al., BMC Genomics 20 (2019) 445.
doi: 10.1186/s12864-019-5754-6
Y. Yue, J. Liu, C. He, Genes Dev. 29 (2015) 1343-1355.
doi: 10.1101/gad.262766.115
J. Liu, Y. Yue, D. Han, et al., Nat. Chem. Biol. 10 (2014) 93-95.
doi: 10.1038/nchembio.1432
Z. Hao, T. Wu, X. Cui, et al., Mol. Cell. 78 (2020) 382-395.
doi: 10.1016/j.molcel.2020.02.018
X. Wang, Z. Li, Q. Zhang, et al., Biochim. Biophys. Acta Gene Regul. Mech. 1861 (2018) 815-825.
doi: 10.1016/j.bbagrm.2018.07.013
S.M. Kweon, Y. Chen, E. Moon, et al., Mol. Cell 74 (2019) 1138-1147.
doi: 10.1016/j.molcel.2019.03.018
Z. Zhang, Y. Hou, Y. Wang, et al., Sci. Rep. 10 (2020) 8285.
doi: 10.1038/s41598-020-64873-w
H. Chen, L. Gu, E.A. Orellana, et al., Cell Res. 30 (2020) 544-547.
doi: 10.1038/s41422-019-0270-4
Y.T. Goh, C.W.Q. Koh, D.Y. Sim, X. Roca, W.S.S. Goh, Nucleic Acids Res. 48 (2020) 9250-9261.
doi: 10.1093/nar/gkaa684
T. Malone, R.M. Blumenthal, X. Cheng, J. Mol. Biol. 253 (1995) 618-632.
doi: 10.1006/jmbi.1995.0577
A. Timinskas, V. Butkus, A. Janulaitis, Gene 157 (1995) 3-11.
doi: 10.1016/0378-1119(94)00783-O
Q. Xie, T.P. Wu, R.C. Gimple, et al., Cell 175 (2018) 1228-1243.
doi: 10.1016/j.cell.2018.10.006
W. Li, Y. Shi, T. Zhang, J. Ye, J. Ding, Cell Discovery 5 (2019) 51.
doi: 10.1038/s41421-019-0121-y
Y. Wang, Y. Sheng, Y. Liu, et al., Nucleic Acids Res. 47 (2019) 11771-11789.
doi: 10.1093/nar/gkz1053
L.Y. Beh, G.T. Debelouchina, D.M. Clay, et al., Cell 177 (2019) 1781-1796.
doi: 10.1016/j.cell.2019.04.028
X. Liu, W. Lai, Y. Li, et al., Cell Res. 31 (2021) 94-97.
doi: 10.1038/s41422-020-0317-6
M.U. Musheev, A. Baumgartner, L. Krebs, C. Niehrs, Nat. Chem. Biol. 16 (2020) 630-634.
doi: 10.1038/s41589-020-0504-2
E. van den Born, C.B. Vagbo, L. Songe-Moller, et al., Nat. Commun. 2 (2011) 172.
doi: 10.1038/ncomms1173
V. van Deuren, S. Plessers, J. Robben, DNA Repair 96 (2020) 102995.
doi: 10.1016/j.dnarep.2020.102995
C. Zhou, Y. Liu, X. Li, J. Zou, S. Zou, Bone Res. 4 (2016) 16033.
doi: 10.1038/boneres.2016.33
C.W.Q. Koh, Y.T. Goh, J.D.W. Toh, et al., Nucleic Acids Res. 46 (2018) 11659-11670.
doi: 10.1093/nar/gky1104
Q. Li, C. Qian, H. Feng, et al., Neurosci. Bull. 37 (2021) 809-814.
doi: 10.1007/s12264-021-00671-2
F. Liu, W. Clark, G. Luo, et al., Cell 167 (2016) 816-828.
doi: 10.1016/j.cell.2016.09.038
M. Zhang, S. Yang, R. Nelakanti, et al., Cell Res. 30 (2020) 197-210.
doi: 10.1038/s41422-019-0237-5
M. Bayoumi, M. Munir, Front. Cell Dev. Biol. 8 (2021) 587108.
doi: 10.3389/fcell.2020.587108
J.F. Martin Carli, C.A. LeDuc, Y. Zhang, G. Stratigopoulos, R.L. Leibel, J. Lipid Res. 59 (2018) 1446-1460.
doi: 10.1194/jlr.M085555
B. Yao, Y. Li, Z. Wang, et al., Mol. Cell 71 (2018) 848-857.
doi: 10.1016/j.molcel.2018.07.005
Z. Liang, A. Riaz, S. Chachar, et al., Mol. Plant 13 (2020) 14-30.
doi: 10.1016/j.molp.2019.12.007
O. Deniz, J.M. Frost, M.R. Branco, Nat. Rev. Genet. 20 (2019) 417-431.
doi: 10.1038/s41576-019-0106-6
S. Liao, H. Sun, C. Xu, Genomics Proteomics Bioinf. 16 (2018) 99-107.
doi: 10.1016/j.gpb.2018.04.002
H. Shi, J. Wei, C. He, Mol. Cell 74 (2019) 640-650.
doi: 10.1016/j.molcel.2019.04.025
X. Dai, G. Gonzalez, L. Li, et al., Anal. Chem. 92 (2020) 1346-1354.
doi: 10.1021/acs.analchem.9b04505
X. Dai, T. Wang, G. Gonzalez, Y. Wang, Anal. Chem. 90 (2018) 6380-6384.
doi: 10.1021/acs.analchem.8b01703
M. Lu, Cell 77 (1994) 413-426.
doi: 10.1016/0092-8674(94)90156-2
S. He, G. Zhang, J. Wang, et al., Nat. Commun. 10 (2019) 2219.
doi: 10.1038/s41467-019-10202-3
C.B. Woodcock, J.R. Horton, J. Zhou, Nucleic Acids Res. 48 (2020) 10329-10341.
doi: 10.1093/nar/gkaa604
B. Wang, Q. Luo, Y. Li, et al., Nucleic Acids Res. 48 (2020) 460-471.
doi: 10.1093/nar/gkz1081
Z. Li, S. Zhao, R.V. Nelakanti, et al., Nature 583 (2020) 625-630.
doi: 10.1038/s41586-020-2500-9
J.L. Robbins-Manke, Z.Z. Zdraveski, M. Marinus, J.M. Essigmann, J. Bacteriol. 187 (2005) 7027-7037.
doi: 10.1128/JB.187.20.7027-7037.2005
Q. Zhu, R. Stoger, R. Alberio, Front. Cell Dev. Biol. 6 (2018) 24.
doi: 10.3389/fcell.2018.00024
K.J. Wu, Cancer Lett. 494 (2020) 40-46.
doi: 10.1016/j.canlet.2020.08.025
M.A. Sanchez-Romero, I. Cota, J. Casadesus, Curr. Opin. Microbiol. 25 (2015) 9-16.
doi: 10.1016/j.mib.2015.03.004
K. Chen, B.S. Zhao, C. He, Cell Chem. Biol. 23 (2016) 74-85.
doi: 10.1016/j.chembiol.2015.11.007
G. Fang, D. Munera, D.I. Friedman, et al., Nat. Biotechnol. 30 (2012) 1232-1239.
doi: 10.1038/nbt.2432
Y. Wang, X. Chen, Y. Sheng, Y. Liu, S. Gao, Nucleic Acids Res. 45 (2017) 11594-11606.
doi: 10.1093/nar/gkx883
W. Wang, L. Xu, L. Hu, et al., J. Am. Chem. Soc. 139 (2017) 14436-14442.
doi: 10.1021/jacs.7b06381
J. Bang, S.H. Bae, C.J. Park, J.H. Lee, B.S. Choi, J. Am. Chem. Soc. 130 (2008) 17688-17696.
doi: 10.1021/ja8038272
S. Wang, J. Wang, X. Zhang, et al., Chem. Sci. 7 (2016) 1440-1446.
doi: 10.1039/C5SC02902C
B. Li, K. Du, S. Gu, et al., Chem. Res. Toxicol. 32 (2019) 840-849.
doi: 10.1021/acs.chemrestox.8b00348
S. Wang, Y. Song, Y. Wang, et al., Chem. Sci. 8 (2017) 6380-6388.
doi: 10.1039/C7SC02340E
X. Zhang, R.M. Blumenthal, X. Cheng, Trends Biochem. Sci. 46 (2021) 175-183.
doi: 10.1016/j.tibs.2020.09.007
J.B. Kozdon, M.D. Melfi, K. Luong, et al., Proc. Natl. Acad. Sci. U. S. A. 110 (2013) E4658-E4667.
doi: 10.1073/pnas.1415762111
L.T. Diao, S.J. Xie, P.J. Yu, et al., Exp. Cell Res. 400 (2021) 112492.
doi: 10.1016/j.yexcr.2021.112492
Q. Zhang, Z. Liang, X. Cui, et al., Mol. Plant 11 (2018) 1492-1508.
doi: 10.1016/j.molp.2018.11.005
K. Shimada, M. Nakamura, S. Anai, et al., Cancer Res. 69 (2009) 3157-3164.
doi: 10.1158/0008-5472.CAN-08-3530
T. Fujii, K. Shimada, S. Anai, K. Fujimoto, N. Konishi, Cancer Sci. 104 (2013) 321-327.
doi: 10.1111/cas.12089
I. Yamato, M. Sho, K. Shimada, et al., Cancer Res. 72 (2012) 4829-4839.
doi: 10.1158/0008-5472.CAN-12-0328
N. Konishi, M. Nakamura, E. Ishida, et al., Clin. Cancer Res. 11 (2005) 5090-5097.
doi: 10.1158/1078-0432.CCR-05-0195
X. Sheng, J. Wang, Y. Guo, J. Zhang, J. Luo, Front. Oncol. 10 (2020) 616098.
doi: 10.3389/fonc.2020.616098
Y. Tsukamoto, T. Tamura, Y. Maeda, K. Miyake, M. Ato, Tuberculosis 121 (2020) 101890.
doi: 10.1016/j.tube.2019.101890
F. Zheng, D. Tang, H. Xu, et al., Lupus 28 (2019) 359-364.
doi: 10.1177/0961203319828520
N.C. Parashar, G. Parashar, H. Nayyar, R. Sandhir, Biochimie 144 (2018) 56-62.
doi: 10.1016/j.biochi.2017.10.014
Y. Guo, Y. Pei, K. Li, W. Cui, D. Zhang, Aging 12 (2020) 6276-6291.
doi: 10.18632/aging.103023
L. Wu, Y. Pei, Y. Zhu, et al., Cell Death Dis. 10 (2019) 909.
doi: 10.1038/s41419-019-2152-6
L. Ouyang, X. Su, W. Li, et al., J. Clin. Invest. 131 (2021) e146985.
doi: 10.1172/JCI146985
X. Li, Q. Zhao, W. Wei, et al., Nat. Neurosci. 22 (2019) 534-544.
doi: 10.1038/s41593-019-0339-x
C. Ma, R. Niu, T. Huang, et al., Nat. Cell Biol. 21 (2019) 319-327.
doi: 10.1038/s41556-018-0238-5
Q.L. Wan, X. Meng, W. Dai, et al., Sci. Adv. 7 (2021) eabc3026.
doi: 10.1126/sciadv.abc3026
D. Liang, H. Wang, W. Song, et al., Biochem. Biophys. Res. Commun. 480 (2016) 120-125.
doi: 10.1016/j.bbrc.2016.09.136
S. Laddachote, M. Nagata, W. Yoshida, Biochem. Biophys. Res. Commun. 524 (2020) 472-476.
doi: 10.1016/j.bbrc.2020.01.116
J. Xiong, T.T. Ye, C.J. Ma, et al., Nucleic Acids Res. 47 (2019) 1268-1277.
doi: 10.1093/nar/gky1218
S.S. Kamat, H. Fan, J.M. Sauder, et al., J. Am. Chem. Soc. 133 (2011) 2080-2083.
doi: 10.1021/ja110157u
B.I. Fedeles, V. Singh, J.C. Delaney, D. Li, J.M. Essigmann, J. Biol. Chem. 290 (2015) 20734-20742.
doi: 10.1074/jbc.R115.656462
K. Douvlataniotis, M. Bensberg, A. Lentini, B. Gylemo, C.E. Nestor, Sci. Adv. 6 (2020) eaay3335.
doi: 10.1126/sciadv.aay3335
M. Bochtler, H. Fernandes, BioEssays 43 (2021) e2000243.
doi: 10.1002/bies.202000243
Pei Liu , Xiao-Hai Yang , Qing Wang , Jing Huang , Jian-Bo Liu , Ying Zhu , Lei-Liang He , Ke-Min Wang . Sensitive detection of DNA methyltransferase activity based on rolling circle amplifi cation technology. Chinese Chemical Letters, 2014, 25(7): 1047-1051. doi: 10.1016/j.cclet.2014.05.002
Meng-Yuan Chen , Zhu Gui , Ke-Ke Chen , Jiang-Hui Ding , Jin-Gang He , Jun Xiong , Jia-Le Li , Jie Wang , Bi-Feng Yuan , Yu-Qi Feng . Adolescent alcohol exposure alters DNA and RNA modifications in peripheral blood by liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2022, 33(4): 2086-2090. doi: 10.1016/j.cclet.2021.08.094
Lan Meng-Dan , Yuan Bi-Feng , Feng Yu-Qi . Deciphering nucleic acid modifications by chemical derivatization-mass spectrometry analysis. Chinese Chemical Letters, 2019, 30(1): 1-6. doi: 10.1016/j.cclet.2018.04.021
He Sitian , He Leiliang , Liu Beibei , Yu Songcheng , Liu Li'e , Tian Yongmei , Wang Jia , Ding Lihua , Wang Yilin , Qu Lingbo , Yu Fei , Wu Yongjun . Development of a rapid and sensitivity magnetic chemiluminescence immunoassay for DNA methyltransferase 1 in human serum. Chinese Chemical Letters, 2019, 30(5): 1031-1034. doi: 10.1016/j.cclet.2019.03.013
Juan Wang , Yuwei Sheng , Ying Yang , Xiaoxia Dai , Changjun You . Next-generation sequencing-based analysis of the effect of N6-methyldeoxyadenosine modification on DNA replication in human cells. Chinese Chemical Letters, 2022, 33(4): 2077-2080. doi: 10.1016/j.cclet.2021.08.066
Peng ZHANG , Ji Ben MENG , Teruo Matsuura , Yong Mei WANG . DNA Modification with Photochromic Spiro Compounds. Chinese Chemical Letters, 2002, 13(4): 299-302.
Bin YAO , You Jun ZHOU , Jü ZHU , Jia Guo Lü , Yao Wu LI , Jun CHENG , Qing Feng JIANG , Can Hui ZHENG . Design, Synthesis and Biological Evaluation of Non-azole Inhibitors of Lanosterol 14α-Demethylase of Fungi. Chinese Chemical Letters, 2006, 17(9): 1189-1192.
Zhi Gang Dan , Jun Zhang , Shi Chong Yu , Hong Gang Hu , Xiao Yun Chai , Qing Yan Sun , Qiu Ye Wu . Design and synthesis of novel triazole antifungal derivatives based on the active site of fungal lanosterol 14a-demethylase (CYP51). Chinese Chemical Letters, 2009, 20(8): 935-938. doi: 10.1016/j.cclet.2009.03.027
Chang Kui SUN , Yu Zhen ZHANG , Ming CHEN . A Novel β-1, 4-N, 6-O-Diacetylmuramidase from Streptomyces griseus and its Chemical Modification. Chinese Chemical Letters, 2006, 17(11): 1469-1472.
Jian Jun Xue , Xiao Ming Yu . Selective 3- and 6-OH modification of (-)-clausenamide. Chinese Chemical Letters, 2011, 22(7): 671-764. doi: 10.1016/j.cclet.2011.01.026
Hongfei Jiang , Wujun Chen , Jie Wang , Renshuai Zhang . Selective N-terminal modification of peptides and proteins: Recent progresses and applications. Chinese Chemical Letters, 2022, 33(1): 80-88. doi: 10.1016/j.cclet.2021.06.011
Hacer Karatas , Shirley Y. Lee , Elizabeth C. Townsend , Fang Cao , Jing Xu , Denzil Bernard , Liu Liu , Yali Dou , Shaomeng Wang . Structure-based design of conformationally constrained cyclic peptidomimetics to target the MLL1-WDR5 protein-protein interaction as inhibitors of the MLL1 methyltransferase activity. Chinese Chemical Letters, 2015, 26(4): 455-458. doi: 10.1016/j.cclet.2015.03.030
Yong Qing Gao , Ning Zhou , Yu Jian Lv , Mao Shen Cheng , Ke Liang Liu . Ureido-modification of the resin-bound LHRH analogue with N,N'-carbonyldiimidazole. Chinese Chemical Letters, 2009, 20(6): 668-671. doi: 10.1016/j.cclet.2009.01.010
Zhao Xia GUO , Jie YU , Jian YU . Surface Modification of Nanometer Silica by N, N'-dicyclohexyl-carbodiimide Mediated Amidation. Chinese Chemical Letters, 2001, 12(10): 933-934.
Yuanmeng Zhao , Xuewei Wang , Zhen Li , Pingping Zhao , Congliang Tao , Gongzhen Cheng , Wei Luo . Enhanced catalytic activity of Ru through N modification toward alkaline hydrogen electrocatalysis. Chinese Chemical Letters, 2022, 33(2): 1065-1069. doi: 10.1016/j.cclet.2021.05.038
ZHAO Tian-qi , GAO Qiang , LIAO Wei-ping , XU Xiu-feng . Effect of Nd-incorporation and K-modification on catalytic performance of Co3O4 for N2O decomposition. Journal of Fuel Chemistry and Technology, 2019, 47(9): 1120-1128.
ZHANG Zhi-Jian , KUANG Dai-Zhi , JIANG Wu-Jiu , YU Jiang-Xi , ZHU Xiao-Ming , ZHANG Fu-Xing . Synthesis, Crystal Structure, and Thermal Stability of a Dibutyltin Complex {[4-Et2NC6H3(O)C=NC6H3(O)-5-NO2](n-Bu2Sn)}2 and Its Interaction with DNA. Chinese Journal of Structural Chemistry, 2014, 33(9): 1319-1325.
Lei Zhang , Bing Jia , Chang Feng Hu , Fan Wang , Yu Xin Cui . Synthesis and preliminary biological evaluation of the derivatives of O6-benzylguanine as inactivators of O6-alkylguanine-DNA alkyltransferase. Chinese Chemical Letters, 2008, 19(7): 801-804. doi: 10.1016/j.cclet.2008.04.046
Lin Jie ZHI , Bing HAN , Tong ZHAO , Yun Zhao YU , Hong Sheng WANG . Modification of Montmorillonite through Intercalative Polymerization. Chinese Chemical Letters, 2003, 14(1): 108-110.
Hong Lin , Mei-Xian Li , Fei Liu , Dragan Mihailovič . Amplified ultraviolet detection of natural DNA based on Mo6S9-xIx nanowires. Chinese Chemical Letters, 2014, 25(4): 645-648. doi: 10.1016/j.cclet.2013.11.032