Recent advances in BiOBr-based photocatalysts for environmental remediation
-
* Corresponding authors.
E-mail addresses: quyang@hlju.edu.cn (Y. Qu), jinglq@hlju.edu.cn (L. Jing).
Citation:
Lingyou Meng, Yang Qu, Liqiang Jing. Recent advances in BiOBr-based photocatalysts for environmental remediation[J]. Chinese Chemical Letters,
;2021, 32(11): 3265-3276.
doi:
10.1016/j.cclet.2021.03.083
A. Kumar, S.K. Sharma, G. Sharma, et al., J. Hazard. Mater. 364 (2019) 429-440.
doi: 10.1016/j.jhazmat.2018.10.060
M. Cybularczyk-Cecotka, J. Szczepanik, M. Giedyk, Nat. Catal. 3 (2020) 872-886.
doi: 10.1038/s41929-020-00515-8
M. Pálmai, E.M. Zahran, S. Angaramo, et al., J. Mater. Chem. A 2 (2017) 529-534.
T.X. Xu, J.P. Wang, Y. Cong, et al., Chin. Chem. Lett. 31 (2020) 1022-1025.
doi: 10.1016/j.cclet.2019.11.038
H. Song, X.G. Meng, S.Y. Wang, et al., J. Am. Chem. Soc. 141 (2019) 20507-20515.
doi: 10.1021/jacs.9b11440
F. You, J.W. Wan, J. Qi, et al., Angew. Chem. 132 (2020) 731-734.
doi: 10.1002/ange.201912069
D.W. Su, J. Ran, Z.W. Zhuang, et al., Sci. Adv. 6 (2020) eaaz8447.
doi: 10.1126/sciadv.aaz8447
Y. Wang, Z.Z. Zhang, L.N. Zhang, et al., J. Am. Chem. Soc. 140 (2018) 14595-14598.
doi: 10.1021/jacs.8b09344
S. Song, J.F. Qu, P.J. Han, et al., Nat. Commun. 11 (2020) 1-10.
J.L. He, W.H. Fang, R. Long, O.V. Prezhdo, J. Am. Chem. Soc. 141 (2019) 5798-5807.
doi: 10.1021/jacs.8b13392
S. Nadupalli, J. Kreisel, T. Granzow, Sci. Adv. 5 (2019) eaau9199.
doi: 10.1126/sciadv.aau9199
Y.Z. Wei, J.Y. Wang, R.B. Yu, J.W. Wan, D. Wang, Angew. Chem. In. Ed. 58 (2019) 1422-1426.
doi: 10.1002/anie.201812364
J.Z. Liao, K.L. Li, H. Ma, et al., Chin. Chem. Lett. 31 (2020) 2737-2741.
doi: 10.1016/j.cclet.2020.03.081
M. Shi, G.N. Li, J.M. Li, et al., Angew. Chem. In. Ed. 59 (2020) 6590-6595.
doi: 10.1002/anie.201916510
M.D. Sun, Z.M. Zhang, Q.J. Shi, et al., Chin. Chem. Lett. 32 (2021) 2419-2422.
doi: 10.1016/j.cclet.2021.01.013
J.D. Hu, D.Y. Chen, Z. Mo, et al., Angew. Chem. Int. Ed. 58 (2019) 2073-2077.
doi: 10.1002/anie.201813417
Y.C. Zhou, P. Wang, H.F. Fu, C. Zhao, C.C. Wang, Chin. Chem. Lett. 31 (2020) 2645-2650.
doi: 10.1016/j.cclet.2020.02.048
J. Kim, S.H. Lee, F. Tieves, et al., Sci. Adv. 5 (2019) eaax0501.
doi: 10.1126/sciadv.aax0501
F. Chen, H.W. Huang, Y.H. Zhang, T.R. Zhang, Chin. Chem. Lett. 28 (2017) 2244-2250.
doi: 10.1016/j.cclet.2017.09.017
F. Yang, Y. Qu, L.Q. Jing, Chin. Chem. Lett. 3 (2020) 2784-2788.
X.Q. Li, J.D. Wang, Z.M. Hu, M.J. Li, K. Ogino, Chin. Chem. Lett. 29 (2018) 166-170.
doi: 10.1016/j.cclet.2017.05.020
Y. Zhang, J. Guo, L. Shi, et al., Sci. Adv. 3 (2017) e1701162.
doi: 10.1126/sciadv.1701162
X.Y. Wang, L.J. Chen, S.Y. Chong, et al., Nat. Chem. 10 (2018) 1180-1189.
doi: 10.1038/s41557-018-0141-5
Y.W. Huang, N. Zhang, Z.J. Wu, X.Q. Xie, J. Mater. Chem. A 8 (2020) 4978-4995.
doi: 10.1039/C9TA13589H
S.R. Kim, W.K. Jo, J. Hazard. Mater. 380 (2019) 120866.
doi: 10.1016/j.jhazmat.2019.120866
L.L. Liang, S.W. Gao, J.C. Zhu, et al., Chem. Eng. J. 391 (2020) 123599.
doi: 10.1016/j.cej.2019.123599
H. Wang, D.Y. Yong, S.C. Chen, et al., J. Am. Chem. Soc. 140 (2018) 1760-1766.
doi: 10.1021/jacs.7b10997
M.H. Guan, G.M. Ren, X.C. Zhang, et al., Int. J. Quantum Chem. (2020) e26568.
Z.Y. Zhao, W.W. Dai, Inorg. Chem. 53 (2014) 13001-13011.
doi: 10.1021/ic5021059
L.Q. Ye, Y.R. Su, X.L. Jin, H.Q. Xie, C. Zhang, Environ. Sci. Nano 1 (2014) 90-112.
doi: 10.1039/c3en00098b
S.J. Zhang, X.X. Chen, L.M. Song, J. Hazard. Mater. 367 (2019) 304-315.
doi: 10.1016/j.jhazmat.2018.12.060
J. Wu, X.D. Li, W. Shi, et al., Angew. Chem. In. Ed. 130 (2018) 8855-8859.
doi: 10.1002/ange.201803514
J. Li, H. Li, G.M. Zhan, L.Z. Zhang, Acc. Chem. Res. 50 (2017) 112-121.
doi: 10.1021/acs.accounts.6b00523
X.L. Xue, R.P. Chen, H.W. Chen, et al., Nano Lett. 18 (2018) 7372-7377.
doi: 10.1021/acs.nanolett.8b03655
T. Li, Y.W. Gao, L.Z. Zhang, et al., Appl. Catal. B: Environ. 277 (2020) 119065.
doi: 10.1016/j.apcatb.2020.119065
X. Zhang, Z.H. Ai, F.L. Jia, L.Z. Zhang, J. Phys. Chem. C 112 (2008) 747-753.
doi: 10.1021/jp077471t
W.D. Wang, F.Q. Huang, X.P. Lin, Jh. Yang, Catal. Commun. 9 (2008) 8-12.
doi: 10.1016/j.catcom.2007.05.014
H.F. Cheng, B.B. Huang, Y. Dai, Nanoscale 6 (2014) 2009-2026.
doi: 10.1039/c3nr05529a
J. Di, J.X. Xia, H.M. Li, S.J. Guo, S. Dai, Nano Energy 41 (2017) 172-192.
doi: 10.1016/j.nanoen.2017.09.008
X.L. Wu, C.Y. Toe, C.L. Su, et al., J. Mater. Chem. A 8 (2020) 15302-15318.
doi: 10.1039/D0TA01180K
L.P. Han, Y.X. Guo, Z. Lin, H.W. Huang, Colloids Surf. A 603 (2020) 125233.
doi: 10.1016/j.colsurfa.2020.125233
W.D. Shi, S.Y. Song, H.J. Zhang, Chem. Soc. Rev. 42 (2013) 5714-5743.
doi: 10.1039/c3cs60012b
P. Basnet, S. Chatterjee, Nano-Struct. Nano-Objects 22 (2020) 100426.
doi: 10.1016/j.nanoso.2020.100426
D. Wu, S.T. Yue, W. Wang, et al., Appl. Catal. B: Environ. 192 (2016) 35-45.
doi: 10.1016/j.apcatb.2016.03.046
Y.X. Guo, I. Siretanu, Y.H. Zhang, et al., J. Mater. Chem. A 6 (2018) 7500-7508.
doi: 10.1039/C8TA00781K
D. Wu, B. Wang, W. Wang, et al., J. Mater. Chem. A 3 (2015) 15148-15155.
doi: 10.1039/C5TA02757H
Z. Fan, Y.B. Zhao, W. Zhai, et al., RSC Adv. 6 (2016) 2028-2031.
doi: 10.1039/C5RA18768K
A.J. Han, H.W. Zhang, G.K. Chuah, S. Jaenicke, Appl. Catal. B: Environ. 219 (2017) 269-275.
doi: 10.1016/j.apcatb.2017.07.050
J.P. Lai, W.X. Niu, R. Luque, G.B. Xu, Nano Today 10 (2015) 240-267.
doi: 10.1016/j.nantod.2015.03.001
Y.N. Huo, J. Zhang, M. Miao, Y. Jin, Appl. Catal. B: Environ. 111-112 (2012) 334-341.
L.L. Chang, Y.P. Pu, G.D. Shen, et al., New J. Chem. 44 (2020) 2479-2488.
doi: 10.1039/C9NJ06060J
X.C. Lv, D.Y.S. Yan, F.L.Y. Lam, et al., Chem. Eng. J. 401 (2020) 126012.
doi: 10.1016/j.cej.2020.126012
Y.X. Yang, L. Geng, Y.H. Guo, Y.N. Guo, J. Chem, Technol. Biotechnol. 92 (2017) 1236-1247.
doi: 10.1002/jctb.5117
Y. Zhao, T. Yu, X. Tan, C. Xie, S.C. Wang, DaltonTrans. 44 (2015) 20475-20483.
doi: 10.1039/C5DT03315B
D. Zhang, J. Li, Q.G. Wang, Q.S. Wu, J. Mater. Chem. A 1 (2013) 8622-8629.
doi: 10.1039/c3ta11390f
L.L. Zhang, X.P. Yue, J.X. Liu, et al., Sep. Purif. Technol. 231 (2020) 115917.
doi: 10.1016/j.seppur.2019.115917
K. Li, H.B. Zhang, Y.P. Tang, et al., Appl. Catal. B: Environ. 164 (2015) 82-91.
doi: 10.1016/j.apcatb.2014.09.017
X.J. Yu, H.R. Qiu, B. Wang, et al., J. Alloys Compd. 839 (2020) 155597.
doi: 10.1016/j.jallcom.2020.155597
X.Y. Wu, K.K. Zhang, G.K. Zhan, S. Yin, Chem. Eng. J. 352 (2017) 59-70.
W.D. Zhang, Q. Zhang, F. Dong, Ind. Eng. Chem. Res. 52 (2013) 6740-6746.
doi: 10.1021/ie400615f
Z.H. Ai, W.K. Ho, S.C. Lee, L.Z. Zhang, Environ. Sci. Technol. 43 (2009) 4143-4150.
doi: 10.1021/es9004366
Y.T. Cai, J. Song, X.Y. Liu, et al., Environ. Sci. Nano 5 (2018) 2631-2640.
doi: 10.1039/C8EN00866C
G.F. Li, F. Qin, R.M. Wang, et al., J. Colloid Interf. Sci. 409 (2013) 43-51.
doi: 10.1016/j.jcis.2013.07.068
Y.C. Miao, Z.C. Lian, Y.N. Huo, H.X. Li, Chin. J. Catal. 39 (2018) 1411-1417.
doi: 10.1016/S1872-2067(18)63080-3
J. Li, L.J. Cai, J. Shang, Y. Yu, L.Z. Zhang, Adv. Mater. 28 (2016) 4059-4064.
doi: 10.1002/adma.201600301
Y.X. Zhao, S. Zhang, R. Shi, et al., Mater. Today 34 (2020) 78-91.
doi: 10.1016/j.mattod.2019.10.022
J. Di, J.X. Xia, M.X. Ji, et al., ACS Sustain. Chem. Eng. 4 (2016) 136-146.
doi: 10.1021/acssuschemeng.5b00862
Q. Jiang, M.X. Ji, R. Chen, et al., J. Colloid Interf. Sci. 574 (2020) 131-139.
doi: 10.1016/j.jcis.2020.04.018
Z.D. Wang, Z. Chu, C.W. Dong, et al., ACS Appl. Nano Mater. 3 (2020) 1981-1991.
doi: 10.1021/acsanm.0c00022
S. Patnaik, D.P. Sahoo, K. Parida, Carbon 172 (2021) 682-711.
doi: 10.1016/j.carbon.2020.10.073
J.J. Jiang, G. Ye, Z. Wang, et al., Angew. Chem. Int. Ed. 57 (2018) 12037-12042.
doi: 10.1002/anie.201807385
I. Shown, S. Samireddi, Y.C. Chang, et al., Nat. Commun. 9 (2018) 1-10.
doi: 10.1038/s41467-017-02088-w
D.X. Yang, J.L. Liang, L. Luo, et al., Chin. Chem. Lett. 32 (2021) 2534-2538.
doi: 10.1016/j.cclet.2020.12.049
L.H. Shao, Y.T. Liu, L.L. Wang, X.N. Xia, X.Y. Shen, Appl. Surf. Sci. 502 (2020) 143895.
doi: 10.1016/j.apsusc.2019.143895
W. Wang, R. Dai, L. Zhang, et al., J. Mater. Sci. 55 (2020) 11226-11240.
doi: 10.1007/s10853-020-04802-4
J.Q. Guo, X. Liao, M.H. Lee, et al., Appl. Catal. B: Environ. 243 (2019) 502-512.
doi: 10.1016/j.apcatb.2018.09.089
X.C. Jiao, K. Zheng, L. Liang, et al., Chem. Soc. Rev. 49 (2020) 6592-6604.
doi: 10.1039/D0CS00332H
K. Sharma, V. Dutta, S. Sharma, et al., J. Ind. Eng. Chem. 78 (2019) 1-20.
doi: 10.1016/j.jiec.2019.06.022
Y. Wang, Y. Long, Z.Q. Yang, D. Zhang, J. Hazard. Mater. 351 (2018) 11-19.
doi: 10.1016/j.jhazmat.2018.02.027
Z. Shi, Y. Zhang, X.F. Shen, et al., Chem. Eng. J. 386 (2020) 124010.
doi: 10.1016/j.cej.2020.124010
C.S. Guo, S.W. Gao, J.P. Lv, et al., Appl. Catal. B: Environ. 205 (2017) 68-77.
doi: 10.1016/j.apcatb.2016.12.032
Z.Q. Zhang, L.L. Bai, Z.J. Li, Y. Qu, L.Q. Jing, J. Mater. Chem. A 7 (2019) 10879-10897.
doi: 10.1039/C9TA02373A
H. Wang, Y. Qu, Z.K. Xu, et al., Sci. China Mater. 62 (2019) 653-661.
doi: 10.1007/s40843-018-9362-y
H.Z. Wu, C.W. Yuan, R.M. Chen, et al., ACS Appl. Mater. Interfaces 12 (2020) 43741-43749.
doi: 10.1021/acsami.0c12628
L.S. Jiang, Y. Xie, F. He, et al., Chin. Chem. Lett. 32 (2021) 2187-2191.
doi: 10.1016/j.cclet.2020.12.010
V. Dutta, S. Sharma, P. Raizada, et al., J. Environ. Chem. Eng. 8 (2020) 104505.
doi: 10.1016/j.jece.2020.104505
T. Jia, J. Wu, Y. Xiao, et al., J. Colloid Interf. Sci. 587 (2021) 402-416.
doi: 10.1016/j.jcis.2020.12.005
F.R. Guo, J.C. Chen, J.Z. Zhao, et al., Chem. Eng. J. 386 (2020) 124014.
doi: 10.1016/j.cej.2020.124014
J.C. Sin, S.M. Lam, H.H. Zeng, et al., Sep. Purif. Technol. 250 (2020) 117186.
doi: 10.1016/j.seppur.2020.117186
T. Jia, J. Wu, J. Song, et al., Chem. Eng. J. 396 (2020) 125258.
doi: 10.1016/j.cej.2020.125258
D. Majhi, K. Das, A. Mishra, R. Dhiman, B.G. Mishra, Appl. Catal. B: Environ. 260 (2020) 118222.
doi: 10.1016/j.apcatb.2019.118222
Y.Y. Wang, K. Wang, J.L. Wang, X.Y. Wu, G.K. Zhang, J. Mater. Sci. Technol. 56 (2020) 236-243.
doi: 10.1016/j.jmst.2020.03.039
X.B. Li, J. Xiong, X.M. Gao, et al., J. Hazard. Mater. 387 (2020) 121690.
X.X. Jia, Q.F. Han, H.Z. Liu, S.Z. Li, H.P. Bi, Chem. Eng. J. 399 (2020) 125701.
doi: 10.1016/j.cej.2020.125701
L.Q. Ye, Y. Deng, L. Wang, H.Q. Xie, F.Y. Su, ChemSusChem 12 (2019) 3671-3701.
doi: 10.1002/cssc.201901196
P.W. Zhou, L.P. Zhang, Y.M. Dai, et al., J. Clean. Prod. 246 (2020) 119007.
doi: 10.1016/j.jclepro.2019.119007
H.B. Yin, X.F. Chen, R.J. Hou, et al., ACS Appl. Mater. Interfaces 7 (2015) 20076-20082.
doi: 10.1021/acsami.5b05184
S.Y. Chen, R. Yan, X.L. Zhang, et al., Appl. Catal. B: Environ. 209 (2017) 320-328.
doi: 10.1016/j.apcatb.2017.03.003
X.H. Song, J.J. Wang, R.Q. Zhang, et al., J. Phys. Chem. C 123 (2019) 15599-15605.
doi: 10.1021/acs.jpcc.9b02784
J.Y. Zhu, Y.P. Li, X.J. Wang, et al., ACS Sustain. Chem. Eng. 7 (2019) 14953-14961.
doi: 10.1021/acssuschemeng.9b03196
F. Chen, T.Y. Ma, T.R. Zhang, Y.H. Zhang, H.W. Huang, Adv. Mater. 33 (2021) 2005256.
doi: 10.1002/adma.202005256
F. Chen, Z.Y. Ma, L.Q. Ye, et al., Adv. Mater. 32 (2020) 1908350.
doi: 10.1002/adma.201908350
J. Di, C. Chen, C. Zhu, et al., ACS Appl. Mater. Interfaces 11 (2019) 30786-30792.
doi: 10.1021/acsami.9b08109
X.L. Wu, Y.H. Ng, L. Wang, et al., J. Mater. Chem. A 5 (2017) 8117-8124.
doi: 10.1039/C6TA10964K
F. Yang, X.Y. Chu, J.H. Sun, et al., Chin. Chem. Lett. 31 (2020) 2784-2788.
doi: 10.1016/j.cclet.2020.07.033
M. Khan, C.S.L. Fung, A. Kumar, I.M.C. Lo, J. Hazard. Mater. 365 (2019) 733-743.
doi: 10.1016/j.jhazmat.2018.11.053
J. Di, J.X. Xia, M.X. Ji, et al., J. Mater. Chem. A 3 (2015) 15108-15118.
doi: 10.1039/C5TA02388B
G.H. Xu, M. Li, Y. Wang, et al., Sci. Total Environ. 678 (2019) 173-180.
doi: 10.1016/j.scitotenv.2019.04.418
L.X. Jia, W. Zhou, X. Huang, et al., Environ. Sci. Nano 6 (2019) 3601-3610.
doi: 10.1039/C9EN00717B
X. Shi, P.Q. Wang, W. Li, et al., Appl. Catal. B: Environ. 243 (2019) 322-329.
doi: 10.1016/j.apcatb.2018.10.037
X.R. Yang, Z. Chen, W. Zhao, et al., J. Alloys Compd. 864 (2021) 158784.
doi: 10.1016/j.jallcom.2021.158784
B.C. Hodges, E.L. Cates, J.H. Kim, Nat. Nanotechnol. 13 (2018) 642-650.
doi: 10.1038/s41565-018-0216-x
T. Kanagaraj, S. Thiripuranthagan, Appl. Catal. B: Environ. 207 (2017) 218-232.
doi: 10.1016/j.apcatb.2017.01.084
S.T. Guan, H. Yang, X.F. Sun, T. Xian, Opt. Mater. 100 (2020) 109644.
doi: 10.1016/j.optmat.2019.109644
P.J. Li, W. Cao, Y. Zhu, et al., Sci. Total Environ. 715 (2020) 136809.
doi: 10.1016/j.scitotenv.2020.136809
S. Li, Z.R. Wang, X.Y. Xie, et al., J. Hazard. Mater. 391 (2020) 121407.
doi: 10.1016/j.jhazmat.2019.121407
H. Li, F. Deng, Y. Zheng, et al., Environ. Sci. Nano 6 (2019) 3670-3683.
doi: 10.1039/C9EN00957D
S.B. Wang, X. Han, Y.H. Zhang, et al., Small Struct. 2 (2021) 2000061.
doi: 10.1002/sstr.202000061
J. Wu, Y. Xie, Y. Ling, et al., Chem. Eng. J. 400 (2020) 125944.
doi: 10.1016/j.cej.2020.125944
D.N. Liu, D.Y. Chen, N.J. Li, et al., Angew. Chem. 132 (2020) 4549-4554.
doi: 10.1002/ange.201914949
Q. Wang, Z.Q. Liu, D.M. Liu, et al., Chem. Eng. J. 360 (2019) 838-847.
doi: 10.1016/j.cej.2018.12.038
Y. Huang, J. Zhang, Z.Y. Wang, et al., Sol. RRL 4 (2020) 2000170.
doi: 10.1002/solr.202000170
X. Shi, P.Q. Wang, L. Wang, et al., ACS Sustain. Chem. Eng. 6 (2018) 13739-13746.
doi: 10.1021/acssuschemeng.8b01622
Xiaoming Fu , Haibo Huang , Guogang Tang , Jingmin Zhang , Junyue Sheng , Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Yujia LI , Tianyu WANG , Fuxue WANG , Chongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
Yuan Teng , Zichun Zhou , Jinghua Chen , Siying Huang , Hongyan Chen , Daibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430
Jing Wang , Zenghui Li , Xiaoyang Liu , Bochao Su , Honghong Gong , Chao Feng , Guoping Li , Gang He , Bin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Pengcheng Yan , Peng Wang , Jing Huang , Zhao Mo , Li Xu , Yun Chen , Yu Zhang , Zhichong Qi , Hui Xu , Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047
Tian-Yu Gao , Xiao-Yan Mo , Shu-Rong Zhang , Yuan-Xu Jiang , Shu-Ping Luo , Jian-Heng Ye , Da-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364
Yi Liu , Zhe-Hao Wang , Guan-Hua Xue , Lin Chen , Li-Hua Yuan , Yi-Wen Li , Da-Gang Yu , Jian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138
Sixiao Liu , Tianyi Wang , Lei Zhang , Chengyin Wang , Huan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Qinghong Zhang , Qiao Zhao , Xiaodi Wu , Li Wang , Kairui Shen , Yuchen Hua , Cheng Gao , Yu Zhang , Mei Peng , Kai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167
Ping Lu , Baoyin Du , Ke Liu , Ze Luo , Abiduweili Sikandaier , Lipeng Diao , Jin Sun , Luhua Jiang , Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361
Jijoe Samuel Prabagar , Kumbam Lingeshwar Reddy , Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564
Xin Jiang , Han Jiang , Yimin Tang , Huizhu Zhang , Libin Yang , Xiuwen Wang , Bing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415