Recent advances in nonmetallic atom-doped metal nanocrystals: Synthesis and catalytic applications
-
* Corresponding author.
E-mail address: jinm@mail.xjtu.edu.cn (Mingshang Jin).
Citation:
Ruiyun Guo, Ke Zhang, Shangdong Ji, Yangzi Zheng, Mingshang Jin. Recent advances in nonmetallic atom-doped metal nanocrystals: Synthesis and catalytic applications[J]. Chinese Chemical Letters,
;2021, 32(9): 2679-2692.
doi:
10.1016/j.cclet.2021.03.041
R.C. Baetzold, R.E. Mack, J. Chem. Phys. 62(1975) 1513-1520.
doi: 10.1063/1.430615
V.I. Klimov, Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties, 1st ed., CRC Press, Florida, 2003.
Y. Hou, S. Gao, J. Alloys Compd. 365(2004) 112-116.
doi: 10.1016/S0925-8388(03)00651-0
A. Nag, D.S. Chung, D.S. Dolzhnikov, et al., J. Am. Chem. Soc. 134(2012) 13604-13615.
doi: 10.1021/ja301285x
H. Jahangirl, J. Bennett, P. Mahjoubi, K. Wilson, S. Gu, Catal. Sci. Technol. 4(2014) 2210-2229.
doi: 10.1039/C4CY00327F
M.K. Samantaray, R. Dey, S. Kavitake, et al., J. Am. Chem. Soc. 138(2016) 8595-8602.
doi: 10.1021/jacs.6b04307
W. Wang, X. Li, T. He, Y. Liu, M. Jin, Nano Lett. 19(2019) 1743-1748.
doi: 10.1021/acs.nanolett.8b04735
X. Li, Z. Wang, Z. Zhang, et al., Mater. Horiz. 4(2017) 584.
doi: 10.1039/C6MH00478D
A.A. Peterson, J.K. Nørskov, J. Phys. Chem. Lett. 3(2012) 251-258.
doi: 10.1021/jz201461p
P. Yu, M. Pemberton, P. Plasse, J. Power Sources 144(2005) 11-20.
doi: 10.1016/j.jpowsour.2004.11.067
M. Pourbaix, Altas of Electrochemical Equilibrium in Aqueous Solutions, 2nd ed., Pergamon Press, New York, 1966.
Y. Liu, C. Wang, W. Wang, et al., Nanoscale 11(2019) 14828.
doi: 10.1039/C9NR04349G
M. Ahmadi, H. Mistry, B.R. Cuenya, J. Phys. Chem. Lett. 7(2016) 3519-3533.
doi: 10.1021/acs.jpclett.6b01198
J.R. Norton, J. Sowa, Chem. Rev. 116(2016) 8315-8317.
doi: 10.1021/acs.chemrev.6b00441
S. Kato, S.K. Matam, P. Kerger, et al., Angew. Chem. Int. Ed. 128(2016) 6132-6136.
doi: 10.1002/ange.201601402
T. Zhang, H. Miyaoka, H. Miyaoka, T. Ichikawa, Y. Kojima, ACS Appl. Energy Mater. 1(2018) 232-242.
M.M.H. Bhuiya, A. Kumar, K.J. Kim, Int. J. Hydrogen Energy 40(2015) 2231-2247.
doi: 10.1016/j.ijhydene.2014.12.009
Z. Zhao, X. Huang, M. Li, et al., J. Am. Chem. Soc. 137(2015) 15672-1567.
doi: 10.1021/jacs.5b11543
C. Zhan, H. Li, X. Li, Y. Jiang, Z. Xie, Sci. China Mater. 63(2020) 375-382.
doi: 10.1007/s40843-019-1187-6
J. Zhang, M. Chan, H. Li, et al., Nano Energy 44(2018) 127-134.
doi: 10.1016/j.nanoen.2017.11.075
Y. Lu, J. Wang, Y. Peng, A. Fisher, X. Wang, Adv. Energy Mater. 7(2017) 1700919.
doi: 10.1002/aenm.201700919
H. Li, P. Wen, Q. Li, et al., Adv. Energy Mater. 7(2017) 1700513.
doi: 10.1002/aenm.201700513
J. Masa, P. Weide, D. Peeters, et al., Adv. Energy Mater. 6(2016) 1502313.
doi: 10.1002/aenm.201502313
S.E. Skrabalak, K.S. Suslick, Chem. Mater. 18(2006) 3103-3107.
doi: 10.1021/cm060341x
L. Chen, Y. Lu, Q. Hong, J. Lin, F.M. Dautzenberg, Appl. Catal. A: Gen. 292(2005) 295-304.
doi: 10.1016/j.apcata.2005.06.010
R. Ma, Y. Zhou, Y. Chen, et al., Angew. Chem. Int. Ed. 54(2015) 14723-14727.
doi: 10.1002/anie.201506727
K. Zhang, Y. Zhao, D. Fu, Y. Chen, J. Mater. Chem. A 3(2015) 5783-5788.
doi: 10.1039/C4TA06706A
X. Fan, H. Zhou, X. Guo, ACS Nano 9(2015) 5125-5134.
doi: 10.1021/acsnano.5b00425
A.L. Stottlemyer, E.C. Weigert, J.G. Chen, Ind. Eng. Chem. Res. 50(2011) 16-22.
doi: 10.1021/ie100441p
N.I. Il'Chenko, Y.I. Pyatnitskii, N.V. Pavlenko, Theor. Exp. Chem. 34(1998) 239-256.
doi: 10.1007/BF02523256
A.J. Brungs, A.P. York, M.L. Green, Catal. Lett. 57(1999) 65-69.
doi: 10.1023/A:1019062608228
W. Zheng, T.P. Cotter, P. Kaghazchi, et al., J. Am. Chem. Soc. 135(2013) 3458-3464.
doi: 10.1021/ja309734u
R. Guo, Q. Chen, X. Li, et al., J. Mater. Chem. A 7(2019) 4714-4720.
doi: 10.1039/C8TA12002A
J.G. Choi, J.R. Brenner, C.W. Colling, et al., Catal. Today 15(1992) 201-222.
doi: 10.1016/0920-5861(92)80176-N
J.C. Schlatter, S.T. Oyama, J.E. Metcalfe III, et al., Ind. Eng. Chem. Res. 27(1998) 1648-1653.
H. Wu, W. Chen, J. Am. Chem. Soc. 133(2011) 15236-15239.
doi: 10.1021/ja204748u
K. Xu, P. Chen, X. Li, et al., J. Am. Chem. Soc. 137(2015) 4119-4125.
doi: 10.1021/ja5119495
W.F. Chen, K. Sasaki, C. Ma, et al., Angew. Chem. Int. Ed. 51(2012) 6131-6135.
doi: 10.1002/anie.201200699
F. Yu, H. Zhou, Z. Zhu, et al., ACS Catal. 7(2017) 2052-2057.
doi: 10.1021/acscatal.6b03132
R. Guo, K. Zhang, Y. Liu, et al., J. Mater. Chem. A 9(2021) 6196-6204.
doi: 10.1039/D0TA11054J
J. Védrine, Catalysts 7(2017) 341.
doi: 10.3390/catal7110341
A.P.S. Chouhan, A.K. Sarma, Renew. Sust. Energ. Rev. 15(2011) 4378-4399.
doi: 10.1016/j.rser.2011.07.112
J.L. Callahan, R.K. Grasselli, J. AlChE 9(1963) 755-760.
doi: 10.1002/aic.690090610
Y. Jin, H. Wang, J. Li, et al., Adv. Mater. 28(2016) 3785-3790.
doi: 10.1002/adma.201506314
Y. Jin, P.K. Shen, J. Mater. Chem. A 3(2015) 20080-20085.
doi: 10.1039/C5TA06018D
L. Yang, J. Yu, Z. Wei, et al., Nano Energy 41(2017) 772-779.
doi: 10.1016/j.nanoen.2017.03.032
W.T. Hong, M. Risch, K.A. Stoerzinger, et al., Energy Environ. Sci. 8(2015) 1404-1427.
doi: 10.1039/C4EE03869J
J. Pan, X.L. Tian, S. Zaman, et al., Batter. Supercaps 2(2018) 336-347.
A.B. Laursen, K.R. Patraju, M.J. Whitaker, et al., Energy Environ. Sci. 8(2015) 1027-1034.
doi: 10.1039/C4EE02940B
S.T. Oyama, T. Gott, H. Zhao, Y.L. Lee, Catal. Today 143(2009) 94-107.
doi: 10.1016/j.cattod.2008.09.019
J.F. Callejas, C.G. Read, E.J. Popczun, J.M. McEnaney, R.E. Schaak, Chem. Mater. 27(2015) 3769-3774.
doi: 10.1021/acs.chemmater.5b01284
Z. Pu, Q. Liu, A.M. Asiri, X. Sun, ACS Appl. Mater. Interfaces 6(2014) 21874-21879.
doi: 10.1021/am5060178
J. Tian, Q. Liu, N. Cheng, A.M. Asiri, X. Sun, Angew. Chem. Int. Ed. 53(2014) 9577-9581.
doi: 10.1002/anie.201403842
T. Liu, L. Xie, J. Yang, et al., ChemElectroChem 4(2017) 1840-1845.
doi: 10.1002/celc.201700392
C. Du, M. Shang, J. Mao, W. Song, J. Mater. Chem. A 5(2017) 15940-15949.
doi: 10.1039/C7TA03669H
C.P. Lee, W.F. Chen, T. Billo, et al., J. Mater. Chem. A 4(2016) 4553-4561.
doi: 10.1039/C6TA00464D
B. Hinnemann, P.G. Moses, J. Bonde, et al., J. Am. Chem. Soc. 127(2005) 5308-5309.
doi: 10.1021/ja0504690
S. Dou, L. Tao, J. Huo, S. Wang, L. Dai, Energy Environ. Sci. 9(2016) 1320-1326.
doi: 10.1039/C6EE00054A
Y. Qi, L. Zhang, L. Sun, et al., Nanoscale 12(2020) 1985-1993.
doi: 10.1039/C9NR08583A
J. Xie, J. Zhang, S. Li, et al., J. Am. Chem. Soc. 135(2013) 17881-17888.
doi: 10.1021/ja408329q
H. Kohlmann, Metal Hydrides, Encyclopedia of Physical Science and Technology, 3rd ed., Academic Press, 2003.
K. Young, Metal Hydrides, BASF/Battery Materials-Ovonic, 1st ed., Elsevier, Michigan, 2013.
N. Nishimiya, K. Numata, H. Saito, T. Mori, S. Miyake, Hydrogen Absorbing Films Prepared by Ion Beam Assisted Deposition, 1st ed., Novel Materials Processing, 2005.
S. Suda, G.S. Zeit, Phys. Chem. 183(1994) 149.
F. Schüth, B. Bogdanovi c, M. Felderhoff, Chem. Commun. 5(2004) 2249-2258.
B. Sakintuna, F. Lamari-Darkrim, Int. J. Hydrogen Energy 32(2007) 1121-1140.
doi: 10.1016/j.ijhydene.2006.11.022
J.W. Sheffield, K.B. Martin, Electricity and Hydrogen as Energy Vectors for Transportation Vehicles, Woodhead Publishing, 2014.
S. Gupta, N. Patel, A. Miotello, D.C. Kothari, J. Power Sources 279(2015) 620-625.
doi: 10.1016/j.jpowsour.2015.01.009
P. Zhang, M. Wang, Y. Yang, et al., Nano Energy 19(2016) 98-107.
doi: 10.1016/j.nanoen.2015.11.020
H. Vrubel, X. Hu, Angew. Chem. Int. Ed. 51(2012) 12703-12706.
doi: 10.1002/anie.201207111
G. Akopov, I. Roh, Z.C. Sobell, et al., J. Am. Chem. Soc. 139(2017) 17120-17127.
doi: 10.1021/jacs.7b08706
P.R. Jothi, K. Yubuta, B.P.T. Fokwa, Adv. Mater. 30(2018) e1704181.
doi: 10.1002/adma.201704181
H. Park, A. Encinas, J.P. Scheifers, Y. Zhang, B.P.T. Fokwa, Angew. Chem. Int. Ed. 56(2017) 5575-5578.
doi: 10.1002/anie.201611756
B.P.T. Fokwa, P.R.N. Misse, M. Gilleßen, R. Dronskowski, J. Alloy Compd. 489(2010) 339-342.
doi: 10.1016/j.jallcom.2009.09.125
H. Park, Y. Zhang, J.P. Scheifers, et al., J. Am. Chem. Soc. 139(2017) 12915-12918.
doi: 10.1021/jacs.7b07247
N. Patel, R. Fernandes, G. Guella, et al., J. Phys. Chem. C 112(2008) 6968-6976.
N. Xu, G. Cao, Z. Chen, et al., J. Mater. Chem. A 5(2017) 12379-12384.
doi: 10.1039/C7TA02644G
J. Xu, L. Chen, K. Tan, A. Borgna, M. Saeys, J. Catal. 261(2009) 158-165.
doi: 10.1016/j.jcat.2008.11.007
K.F. Tan, J. Chang, A. Borgna, M. Saeys, J. Catal. 280(2011) 50-59.
doi: 10.1016/j.jcat.2011.03.002
W. Wang, Y. Yang, J. Bao, H. Luo, Catal. Commun. 11(2009) 100-105.
doi: 10.1016/j.catcom.2009.09.003
W. Wang, Y. Yang, H. Luo, T. Hu, W. Liu, Catal. Commun. 12(2011) 436-440.
doi: 10.1016/j.catcom.2010.11.001
K. Jiang, K. Xu, S. Zou, W.B. Cai, J. Am. Chem. Soc. 136(2014) 4861-4864.
doi: 10.1021/ja5008917
C.W. Chan, A.H. Mahadi, M.M. Li, et al., Nat. Commun. 5(2014) 5787.
doi: 10.1038/ncomms6787
B. Jiang, X.G. Zhang, K. Jiang, D.Y. Wu, W.B. Cai, J. Am. Chem. Soc. 140(2018) 2880-2889.
doi: 10.1021/jacs.7b12506
L.E. Toth, Transition Metal Carbides and Nitrides, 1st ed., Academic Press, New York and London, 1971.
L. Liao, S. Wang, J. Xiao, et al., Energy Environ. Sci. 7(2014) 387-392.
doi: 10.1039/C3EE42441C
F.X. Ma, H.B. Wu, B.Y. Xia, C.Y. Xu, X.W. Lou, Angew. Chem. Int. Ed. 54(2015) 15395-15399.
doi: 10.1002/anie.201508715
H.B. Wu, B.Y. Xia, L. Yu, X.Y. Yu, X.W. Lou, Nat. Commun. 6(2015) 6512.
doi: 10.1038/ncomms7512
D.V. Esposito, J. Chen, Energy Environ. Sci. 4(2011) 3900.
doi: 10.1039/c1ee01851e
R.B. Levy, M. Boudart, Science 181(4099) 547-549.
S.T. Oyama, Catal. Today 15(1992) 179-200.
doi: 10.1016/0920-5861(92)80175-M
R. Michalsky, Y.J. Zhang, A.A. Peterson, ACS Catal. 4(2014) 1274-1278.
doi: 10.1021/cs500056u
M.C. Weidman, D.V. Esposito, Y.C. Hsu, J.G. Chen, J. Power Sources 202(2012) 11-17.
doi: 10.1016/j.jpowsour.2011.10.093
M. Xiao, J. Zhu, L. Feng, C. Liu, W. Xing, Adv. Mater. 27(2015) 2521-2527.
doi: 10.1002/adma.201500262
M.S. Balogun, Y. Huang, W. Qiu, et al., Mater. Today 8(2017) 425-451.
L. Wang, W. Zhang, X. Zheng, et al., Nat. Energy 2(2017) 869-876.
doi: 10.1038/s41560-017-0015-x
L. Volpe, M. Boudart, J. Solid State Chem. 59(1985) 332-347.
doi: 10.1016/0022-4596(85)90301-9
X. Ren, G. Cui, L. Chen, et al., Chem. Commun. 54(2018) 8474-8477.
doi: 10.1039/C8CC03627F
E.G. Gillan, B.R. Kaner, Inorg. Chem. 33(1994) 5693e5700.
B. Avasarala, T. Murray, W. Li, P. Haldar, J. Mater. Chem. 19(2009) 1803.
doi: 10.1039/b819006b
M.M.O. Thotiyl, S. Sampath, Electrochim. Acta 56(2011) 3549-3554.
doi: 10.1016/j.electacta.2010.12.091
F. Liu, X. Yang, D. Dang, X. Tian, ChemElectroChem 6(2019) 2208-2214.
doi: 10.1002/celc.201900252
H. Nan, D. Dang, X.L. Tian, J. Mater. Chem. A 6(2018) 6065-6073.
doi: 10.1039/C8TA00326B
K. Ojha, S. Saha, B. Kumar, K.S. Hazra, A.K. Ganguli, ChemCatChem 8(2016) 1218-1225.
doi: 10.1002/cctc.201501341
W. -J. Jiang, L. Gu, L. Li, et al., J. Am. Chem. Soc. 138(2016) 3570-3578.
doi: 10.1021/jacs.6b00757
S. Cao, Q. Ji, H. Li, et al., J. Am. Chem. Soc. 142(2020) 7083-7091.
doi: 10.1021/jacs.0c00836
D.D. Vaughn II, J. Araujo, P. Meduri, et al., Chem. Mater. 26(2014) 6226-6232.
doi: 10.1021/cm5029723
X. Carrier, S. Royer, E. Marceau, Synthesis of metal oxide catalysts, in: J.C. Védrine (Ed. ), Metal Oxides in Heterogeneous Catalysis, Elsevier, 2018, pp. 43-103.
D. Zappa, A. Bertuna, E. Comini, et al., Beilstein J. Nanotechnol. 8(2017) 1205-1217.
doi: 10.3762/bjnano.8.122
J.C. Védrine, Catalysts 7(2017) 341.
doi: 10.3390/catal7110341
B. Pawelec, Surface processes and composition of metal oxide surfaces, in: J.L. G. Fierro (Ed. ), Metal Oxides, Chemistry and Applications, CRC Press, Florida, 2006, pp. 111-193.
R.J. Davis, Z. Liu, Chem. Mater. 9(1997) 2311-2324.
doi: 10.1021/cm970314u
E. Loni, M.H. Siadati, A. Shokuhfar, Mater. Today Energy 16(2020) 100398.
doi: 10.1016/j.mtener.2020.100398
F. Song, X. Hu, Nat. Commun. 5(2014) 4477.
doi: 10.1038/ncomms5477
H. Jin, J. Wang, D. Su, et al., J. Am. Chem. Soc. 137(2015) 2688-2694.
doi: 10.1021/ja5127165
Y. Wang, T. Zhou, K. Jiang, et al., Adv. Energy Mater. 4(2014) 1400696.
doi: 10.1002/aenm.201400696
R. Jiang, D.T. Tran, J. Li, D. Chu, Energy Environ. Mater. 2(2019) 201-208.
doi: 10.1002/eem2.12031
Si. Chen, H. Huang, P. Jiang, et al., ACS Catal. 10(2020) 1152-1160.
doi: 10.1021/acscatal.9b04922
K. Fominykh, P. Chernev, I. Zaharieva, et al., ACS Nano 9(2015) 5180-5188.
doi: 10.1021/acsnano.5b00520
Z.Q. Liu, H. Cheng, N. Li, T.Y. Ma, Y.Z. Su, Adv. Mater. 28(2016) 3777-3784.
doi: 10.1002/adma.201506197
G. Gardner, J. Al-Sharab, N. Danilovic, et al., Energy Environ. Sci. 9(2016) 184-192.
doi: 10.1039/C5EE02195B
Y. Tong, P. Chen, T. Zhou, et al., Angew. Chem. Int. Ed. 56(2017) 7121-7125.
doi: 10.1002/anie.201702430
M. Sun, H. Liu, J. Qu, et al., Adv. Energy Mater. 6(2016) 1600087.
doi: 10.1002/aenm.201600087
J.F. Callejas, C.G. Read, C.W. Roske, N.S. Lewis, R.E. Schaak, Chem. Mater. 28(2016) 6017-6044.
doi: 10.1021/acs.chemmater.6b02148
R. Prins, M.E. Bussell, Catal. Lett. 142(2012) 1413-1436.
doi: 10.1007/s10562-012-0929-7
Y. Shi, B. Zhang, Chem. Soc. Rev. 45(2016) 1529-1541.
doi: 10.1039/C5CS00434A
H. Wu, Y. Cheng, B. Wang, et al., J. Energy Chem. 57(2021) 198-205.
doi: 10.1016/j.jechem.2020.08.051
R. Guo, W. Bi, K. Zhang, et al., Chem. Mater. 31(2019) 8205-8211.
doi: 10.1021/acs.chemmater.9b03143
A.E. Henkes, Y. Vasquez, R.E. Schaak, J. Am. Chem. Soc. 129(2007) 1896-1897.
doi: 10.1021/ja068502l
H. Tianou, W. Wang, X. Yang, et al., Nat. Commun. 8(2017) 1261.
doi: 10.1038/s41467-017-01258-0
Y. Bai, H. Zhang, L. Fang, et al., J. Mater. Chem. A 3(2015) 5434-5441.
doi: 10.1039/C4TA06903J
S.J. Sawhill, D.C. Phillips, M.E. Bussell, J. Catal. 215(2003) 208-219.
doi: 10.1016/S0021-9517(03)00018-6
Y. Pan, Y. Liu, J. Zhao, et al., J. Mater. Chem. A 3(2015) 1656-1665.
doi: 10.1039/C4TA04867A
F.H. Saadi, A.I. Carim, E. Verlage, et al., J. Phys. Chem. C 118(2014) 29294-29300.
doi: 10.1021/jp5054452
J. Tian, Q. Liu, A.M. Asiri, X. Sun, J. Am. Chem. Soc. 136(2014) 7587-7590.
doi: 10.1021/ja503372r
H. Wu, Y. Cheng, B. Wang, et al., J. Energy Chem. 57(2021) 198-205.
doi: 10.1016/j.jechem.2020.08.051
V. Zuzaniuk, R. Prins, J. Catal. 219(2003) 85-96.
doi: 10.1016/S0021-9517(03)00149-0
Y. Liang, Q. Liu, A.M. Asiri, et al., ACS Catal. 4(2014) 4065-4069.
doi: 10.1021/cs501106g
S. Han, Y. Feng, F. Zhang, et al., Adv. Funct. Mater. 25(2015) 3899-3906.
doi: 10.1002/adfm.201501390
H. Song, Y. Li, L. Shang, et al., Nano Energy 72(2020) 104730.
doi: 10.1016/j.nanoen.2020.104730
H. Li, P. Wen, D.S. Itanze, et al., Nat. Commun. 10(2019) 5724.
doi: 10.1038/s41467-019-13388-8
P. Liu, J.A. Rodriguez, J. Am. Chem. Soc. 127(2005) 14871-14878.
doi: 10.1021/ja0540019
P. Xiao, M.A. Sk, L. Thia, et al., Energy Environ. Sci. 7(2014) 2624.
doi: 10.1039/C4EE00957F
P.E. Blanchard, A.P. Grosvenor, R.G. Cavell, Chem. Mater. 20(2008) 7081-7088.
doi: 10.1021/cm802123a
H. Xie, Q. Geng, X. Zhu, et al., J. Mater. Chem. A 7(2019) 24760-24764.
doi: 10.1039/C9TA09910G
H. Song, Y. Cheng, B. Li, et al., ACS Sustainable Chem. Eng. 8(2020) 3995-4002.
doi: 10.1021/acssuschemeng.0c00745
Y. Zhang, Q. Zhou, J. Zhu, et al., Adv. Funct. Mater. 35(2017) 1702317.
M.G. Kanatzidis, K.R. Poeppelmeier, Prog. Solid State Chem. 36(2008) 1-133.
doi: 10.1016/j.progsolidstchem.2007.02.002
W. Xiong, G. Zhang, Q. Zhang, Inorg. Chem. Front. 1(2014) 292-301.
doi: 10.1039/c4qi00013g
P.R. Bonneau, R.F. Jarvis, R.B. Kaner, Nature 349(1991) 510-512.
doi: 10.1038/349510a0
J. Zhou, J. Lin, X. Huang, et al., Nature 556(2018) 355-359.
doi: 10.1038/s41586-018-0008-3
N. Jiang, Q. Tang, M. Sheng, et al., Catal. Sci. Technol. 6(2016) 1077-1084.
doi: 10.1039/C5CY01111F
B. You, N. Jiang, M. Sheng, Y. Sun, Chem. Commun. 51(2015) 4252-4255.
doi: 10.1039/C4CC09849H
M. Fan, R. Gao, T. Zou, et al., Electrochim. Acta 215(2016) 366-373.
doi: 10.1016/j.electacta.2016.08.129
C.J. Jacobsen, E. Törnqvist, H. Topsøe, Cataly. Lett. 63(1999) 179-183.
doi: 10.1023/A:1019017004845
X. Zhao, L. Zhou, W. Zhang, et al., Chem 4(2018) 1080-1091.
doi: 10.1016/j.chempr.2018.02.011
M.S. Faber, M.A. Lukowski, Q. Ding, N.S. Kaiser, S. Jin, Phys. Chem. C 118(2014) 21347-21356.
doi: 10.1021/jp506288w
J. Zhu, Y. Koltypin, A. Gedanken, Chem. Mater. 12(2000) 73-78.
doi: 10.1021/cm990380r
W. Zhu, X. Yue, W. Zhang, et al., Chem. Commun. 52(2016) 1486-1489.
doi: 10.1039/C5CC08064A
X. Long, G. Li, Z. Wang, et al., J. Am. Chem. Soc. 137(2015) 11900-11903.
doi: 10.1021/jacs.5b07728
D.Y. Wang, M. Gong, H.L. Chou, et al., J. Am. Chem. Soc. 137(2015) 1587-1592.
doi: 10.1021/ja511572q
J. Shi, J. Hu, Y. Luo, X. Sun, A.M. Asiri, Catal. Sci. Technol. 5(2015) 4954-4958.
doi: 10.1039/C5CY01121C
M.R. Gao, J. Liang, Y. Zheng, et al., Nat. Commun. 6(2015) 5982-5988.
doi: 10.1038/ncomms6982
D. Kong, H. Wang, Z. Hu, Y. Cui, J. Am. Chem. Soc. 136(2014) 4897-4900.
doi: 10.1021/ja501497n
C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, Angew. Chem. Int. Ed. 54(2015) 9351-9355.
doi: 10.1002/anie.201503407
T. Liu, A.M. Asiri, X. Sun, Nanoscale 8(2016) 3911-3915.
doi: 10.1039/C5NR07170D
M. Xiao, Y. Miao, Y. Tian, Y. Yan, Electrochim. Acta 165(2015) 206-210.
doi: 10.1016/j.electacta.2015.03.023
Y. Liu, H. Cheng, M. Lyu, et al., J. Am. Chem. Soc. 136(2014) 15670-15675.
doi: 10.1021/ja5085157
X. Zhao, X. Li, Y. Yan, et al., Appl. Catal. B: Environ. 236(2018) 569-575.
doi: 10.1016/j.apcatb.2018.05.054
S. Zhao, R. Jin, H. Abroshan, et al., J. Am. Chem. Soc. 139(2017) 1077-1080.
doi: 10.1021/jacs.6b12529
X. Zhou, H. Zhang, Y. Yan, et al., Angew. Chem. Int. Ed. 55(2016) 1-6.
doi: 10.1002/anie.201510990
R. He, J. Hua, A. Zhang, et al., Nano Lett. 17(2017) 4311-4316.
doi: 10.1021/acs.nanolett.7b01334
X. Zhao, Y. Xing, L. Zhao, et al., J. Catal. 368(2018) 155-162.
doi: 10.1016/j.jcat.2018.10.010
R. He, A. Zhang, Y. Ding, et al., Adv. Mater. 30(2018) 1705872.
doi: 10.1002/adma.201705872
N.S. Choi, Z. Chen, S.A. Freunberger, et al., Angew. Chem. Int. Ed. 51(2012) 9994-10024.
doi: 10.1002/anie.201201429
Y. Min, E. Im, G. Hwang, et al., Nano Res. 12(2019) 1750-1769.
doi: 10.1007/s12274-019-2432-6
D. Jasion, J.M. Barforoush, Q. Qiao, et al., ACS Catal. 5(2015) 6653.
doi: 10.1021/acscatal.5b01637
X. Qian, J. Liu, L. Fu, J. Li, Science 346(2014) 1344-1347.
doi: 10.1126/science.1256815
D. Xiao, G. Liu, W. Feng, et al., Phys. Rev. Lett. 108(2012) 196802.
doi: 10.1103/PhysRevLett.108.196802
Y. Saito, T. Nojima, Nat. Rev. Mater. 2(2017) 16094.
doi: 10.1038/natrevmats.2016.94
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Wei Zhou , Xi Chen , Lin Lu , Xian-Rong Song , Mu-Jia Luo , Qiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902
Yuehai Zhi , Chen Gu , Huachao Ji , Kang Chen , Wenqi Gao , Jianmei Chen , Dafeng Yan . The advanced development of innovative photocatalytic coupling strategies for hydrogen production. Chinese Chemical Letters, 2025, 36(1): 110234-. doi: 10.1016/j.cclet.2024.110234
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Ting Xie , Xun He , Lang He , Kai Dong , Yongchao Yao , Zhengwei Cai , Xuwei Liu , Xiaoya Fan , Tengyue Li , Dongdong Zheng , Shengjun Sun , Luming Li , Wei Chu , Asmaa Farouk , Mohamed S. Hamdy , Chenggang Xu , Qingquan Kong , Xuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
Bowen Li , Ting Wang , Ming Xu , Yuqi Wang , Zhaoxing Li , Mei Liu , Wenjing Zhang , Ming Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467
Hong-Rui Li , Xia Kang , Rui Gao , Miao-Miao Shi , Bo Bi , Ze-Yu Chen , Jun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958
Chenhao Zhang , Qian Zhang , Yezhou Hu , Hanyu Hu , Junhao Yang , Chang Yang , Ye Zhu , Zhengkai Tu , Deli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429
Xinyu Hou , Xuelian Yu , Meng Liu , Hengxing Peng , Lijuan Wu , Libing Liao , Guocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845
Yongqing Kuang , Jie Liu , Jianjun Feng , Wen Yang , Shuanglian Cai , Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012