Citation: Jingjing Wang, Xue Liu, Ziyan Wu, Feng Li, Tingting Qin, Siyuan Zhang, Weiguang Kong, Lantao Liu. Silver-catalyzed decarboxylative C-H functionalization of cyclic aldimines with aliphatic carboxylic acids[J]. Chinese Chemical Letters, ;2021, 32(9): 2777-2781. doi: 10.1016/j.cclet.2021.03.011 shu

Silver-catalyzed decarboxylative C-H functionalization of cyclic aldimines with aliphatic carboxylic acids

    * Corresponding author at: Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
    ** Corresponding authors.
    E-mail addresses: wangjingjing0918@163.com (J. Wang), 17839550737@163.com (W. Kong), liult05@iccas.ac.cn (L. Liu).
  • Received Date: 8 January 2021
    Revised Date: 1 March 2021
    Accepted Date: 3 March 2021
    Available Online: 5 March 2021

Figures(6)

  • Silver-catalyzed decarboxylative C-H alkylation of cyclic aldimines with abundant aliphatic carboxylic acids has been realized under mild reaction conditions generating the corresponding products in moderate to good yields (32%-91%). In addition, a gram-scale reaction, late-stage modification of drug, synthetic transformation of the product, and further application of the catalytic strategy were also performed. Preliminary studies indicate that the reaction undergoes a radical process.
  • 加载中
    1. [1]

      (a) K.C. Majumdar, S. Mondal, Chem. Rev. 111 (2011) 7749-7773;
      (b) S.J. Williams, Expert Opin. Ther. Pat. 23 (2013) 79-98;
      (c) S. Debnath, S. Mondal, Eur. J. Org. Chem. 2018 (2018) 933-956.

    2. [2]

      (a) Y. Luo, H.B. Hepburn, N. Chotsaeng, H.W. Lam, Angew. Chem. Int. Ed. 51 (2012) 8309-8313;
      (b) J.I. Martinez, J.J. Smith, H.B. Hepburn, H.W. Lam, Angew. Chem. Int. Ed. 55 (2016) 1108-1112;
      (c) J. Park, S. Choi, Y. Lee, S.H. Cho, Org. Lett. 19 (2017) 4054-4057.

    3. [3]

      (a) H. Wang, T. Jiang, M.H. Xu, J. Am. Chem. Soc. 135 (2013) 971-974;
      (b) M. Quan, L. Tang, J. Shen, G. Yang, W. Zhang, Chem. Commun. 53 (2017) 609-612;
      (c) B. Zhou, K. Li, C. Jiang, Y. Lu, T. Hayashi, Adv. Synth. Catal. 359 (2017) 1969-1975;
      (d) W. Sun, H. Gu, X. Lin, J. Org. Chem. 83 (2018) 4034-4043.

    4. [4]

      (a) L.D. Munck, A. Monleón, C. Vila, J.R. Pedro, Adv. Synth. Catal. 359 (2017) 1582-1587;
      (b) Y.L. Li, J.X. Liu, X.P. Chen, et al., Adv. Synth. Catal. 362 (2020) 3202-3207.

    5. [5]

      (a) Y. Luo, A.J. Carnell, H.W. Lam, Angew. Chem. Int. Ed. 51 (2012) 6762-6766;
      (b) S.S. Zhang, T.J. Hu, M.Y. Li, et al., Angew. Chem. Int. Ed. 58 (2019) 3387-3391.

    6. [6]

      (a) H.X. Zhang, J. Nie, H. Cai, J.A. Ma, Org. Lett. 16 (2014) 2542-2545;
      (b) C.M. Jia, H.X. Zhang, J. Nie, J.A. Ma, J. Org. Chem. 81 (2016) 8561-8569;
      (c) X.Y. Cui, H.X. Duan, Y. Zhang, Y.Q. Wang, Chem. Asian J. 11 (2016) 3118-3125;
      (d) J. Zhao, Y. Li, L.Y. Chen, X. Ren, J. Org. Chem. 84 (2019) 5099-5108.

    7. [7]

      (a) S.G. Lee, S.G. Kim, RSC Adv. 7 (2017) 34283-34286;
      (b) C. Vila, A. Tortosa, G. Blay, et al., New J. Chem. 43 (2019) 130-134.

    8. [8]

      (a) Y. Liu, T.R. Kang, Q.Z. Liu, et al., Org. Lett. 15 (2013) 6090-6093;
      (b) J. Wang, F. Li, Q. Shen, et al., Synthesis 48 (2016) 441-447;
      (c) B. Mao, W. Shi, J. Liao, et al., Org. Lett. 19 (2017) 6340-6343;
      (d) K. Spielmann, A. Lee, et al., Org. Lett. 20 (2018) 1444-1447;
      (e) J. Zhou, H. Zhang, X.L. Chen, et al., J. Org. Chem. 84 (2019) 9179-9187;
      (f) J.U. Park, H.I. Ahn, H.J. Cho, et al., Adv. Synth. Catal. 362 (2020) 1836-1840;
      (g) C.C. Wang, Z.W. Ma, Y.L. Qu, et al., Chem. Asian J. 15 (2020) 560-563;
      (h) J.A. Xiao, X.L. Cheng, H. Peng, et al., Sci. China Chem. 63 (2020) 785-791;
      (i) H.I. Ahn, J.U. Park, Z. Xuan, J.H. Kim, Org. Biomol. Chem. 18 (2020) 9826-9830.

    9. [9]

      (a) Z. Yang, H. Yu, L. Zhang, et al., Chem. Asian J. 9 (2014) 313-318;
      (b) A.J. Xia, T.R. Kang, L. He, et al., Angew. Chem. Int. Ed. 55 (2016) 1441-1444.

    10. [10]

      (a) X. Qian, J. Han, L. Wang, RSC Adv. 6 (2016) 89234-89237;
      (b) F. Li, J. Wang, W. Pei, et al., Tetrahedron Lett. 59 (2018) 3010-3014.

    11. [11]

      K. Parthasarathy, A.R. Azcargorta, Y. Cheng, C. Bolm, Org. Lett. 16(2014) 2538-2541.  doi: 10.1021/ol500918t

    12. [12]

      (a) B.N. Lai, J.F. Qiu, H.X. Zhang, J. Nie, J.A. Ma, Org. Lett. 18 (2016) 520-523;
      (b) L.D. Munck, C. Vila, M.C. Muñoz, J.R. Pedro, Chem. Eur. J. 22 (2016) 17590-17594;
      (c) J. Liu, X. Tong, M. Chen, J. Org. Chem. 85 (2020) 5193-5202;
      (d) K.P. Jethava, J. Fine, Y. Chen, A. Hossain, G. Chopra, Org. Lett. 22 (2020) 8480-8486;
      (e) Y. Zhao, X.Q. Wang, Y.J. Yu, Y.G. Zhou, J. Org. Chem. 86 (2021) 1262-1272.

    13. [13]

      J. Wang, X. Liu, Z. Wu, et al., Chem. Commun. 57(2021) 1506-1509.  doi: 10.1039/D0CC07181A

    14. [14]

      F. Minisci, R. Bernardi, F. Bertini, R. Galli, M. Perchinummo, Tetrahedron 27(1971) 3575-3579.  doi: 10.1016/S0040-4020(01)97768-3

    15. [15]

      (a) C.J. Li, X. Bi, Silver Catalysis in Organic Synthesis, Wiley-VCH Verlag GmbH & Co. KGaA, 2018, pp. 183-269;
      (b) Q.Z. Zheng, N. Jiao, Chem. Soc. Rev. 45 (2016) 4590-4627;
      (c) M. Yan, J.C. Lo, J.T. Edwards, P.S. Baran, J. Am. Chem. Soc. 138 (2016) 12692-12714;
      (d) Q. Feng, Y.W. Zhao, Q.L. Song, Chin. Chem. Lett. 27 (2016) 571-574;
      (e) Y. Wei, P. Hu, M. Zhang, W. Su, Chem. Rev. 117 (2017) 8864-8907;
      (f) G. Fang, X. Cong, G. Zanoni, Q. Liu, X. Bi, Adv. Synth. Catal. 359 (2017) 1422-1502;
      (g) J. Schwarz, B. König, Green Chem. 20 (2018) 323-361;
      (h) X. Yin, W. Li, B. Zhao, C. Kai, Chin. J. Org. Chem. 38 (2018) 2879-2887;
      (i) R.S. J. Proctor, R.J. Phipps, Angew. Chem. Int. Ed. 58 (2019) 13666-13699;
      (j) S. Wang, Z. Fu, Z. Huang, Y. Jiang, S. Guo, H. Cai, Chin. Chem. Lett. 30 (2019) 1173-1177.

    16. [16]

      Z. Wang, L. Zhu, F. Yin, et al., J. Am. Chem. Soc. 134(2012) 4258-4263.  doi: 10.1021/ja210361z

    17. [17]

      (a) F. Yin, Z. Wang, Z. Li, C. Li, J. Am. Chem. Soc. 134 (2012) 10401-10404;
      (b) X. Liu, Z. Wang, X. Cheng, C. Li, J. Am. Chem. Soc. 134 (2012) 14330-14333;
      (c) W.P. Mai, J.T. Wang, L.R. Yang, et al., Org. Lett. 16 (2014) 204-207;
      (d) P.F. Wang, X.Q. Wang, J.J. Dai, Y.S. Feng, H.J. Xu, Org. Lett. 16 (2014) 4586-4589;
      (e) F. Hu, X. Shao, D. Zhu, L. Lu, Q. Shen, Angew. Chem. Int. Ed. 53 (2014) 6105-6109;
      (f) C. Liu, X. Wang, Z. Li, L. Cui, C. Li, J. Am. Chem. Soc. 137 (2015) 9820-9823;
      (g) Y. Zhu, X. Li, X. Wang, et al., Org. Lett. 17 (2015) 4702-4705;
      (h) P. Natarajan, R. Chaudhary, P.J. Venugopalan, J. Org. Chem. 80 (2015) 10498-10504;
      (i) G. Shi, C. Shao, S. Pan, et al., Org. Lett. 17 (2015) 38-41;
      (j) X.F. Xia, S.L. Zhu, C. Chen, H. Wang, Y.M. Liang, J. Org. Chem. 81 (2016) 1277-1284;
      (k) D. Zhu, X. Shao, X. Hong, L. Lu, Q. Shen, Angew. Chem. Int. Ed. 55 (2016) 15807-15811;
      (l) L. Cui, H. Chen, C. Liu, C. Li, Org. Lett. 18 (2016) 2188-2191;
      (m) Q.W. Zhang, A.T. Brusoe, V. Mascitti, et al., Angew. Chem. Int. Ed. 55 (2016) 9758-9762;
      (n) Y. Zhu, X. Wen, S. Song, N. Jiao, ACS Catal. 6 (2016) 6465-6472;
      (o) L. Lv, S. Lu, Y. Chen, Z. Li, Org. Chem. Front. 4 (2017) 2147-2152;
      (p) X. Tan, Z. Liu, H. Shen, et al., J. Am. Chem. Soc. 139 (2017) 12430-12433;
      (q) X. Tan, T. Song, Z. Wang, et al., Org. Lett. 19 (2017) 1634-1637;
      (r) Y. Dong, Z. Wang, C. Li, Nat. Commun. 8 (2017) 277;
      (s) W. Shu, A. Lorente, E. Gómez-Bengoa, C. Nevado, Nat. Commun. 8 (2017)13832;
      (t) R.G. Xing, Y.N. Li, B.W. Zhang, Chin. Chem. Lett. 28 (2017) 407-411;
      (u) Y. Guo, M.W. Huang, X.L. Fu, et al., Chin. Chem. Lett. 28 (2017) 719-728;
      (v) H. Hu, X. Chen, K. Su, et al., Org. Chem. Front. 5 (2018) 2925-2929;
      (w) K. Sun, S.J. Li, X.L. Chen, et al., Chem. Commun. 55 (2019) 2861-2864;
      (x) Z. Wang, C.Y. Guo, C. Yang, J.P. Chen, J. Am. Chem. Soc. 141 (2019) 5617-5622;
      (y) C.G. Li, Q. Xie, X.L. Xu, et al., Org. Lett. 21 (2019) 8496-8500;
      (z) R. Matsubara, H. Kim, T. Sakaguchi, et al., Org. Lett. 22 (2020) 1182-1187.

    18. [18]

      (a) R. Xia, M.S. Xie, H.Y. Niu, G.R. Qu, H.M. Guo, Org. Lett. 16 (2014) 444-447;
      (b) W.M. Zhao, X.L. Chen, J.W. Yuan, et al., Chem. Commun. 50 (2014) 2018-2020;
      (c) W.P. Mai, B. Sun, L.Q. You, et al., Org. Biomol. Chem. 13 (2015) 2750-2755;
      (d) P.S. Mahajan, S.B. Mhaske, Org. Lett. 20 (2018) 2092-2095;
      (e) J.Y. Guo, T. Guan, J.Y. Tao, K. Zhao, T.P. Loh, Org. Lett. 21 (2019) 8395-8399.

    19. [19]

      (a) Z. Yan, B. Wu, X. Gao, M.W. Chen, Y.G. Zhou, Org. Lett. 18 (2016) 692-695;
      (b) Z.B. Zhao, L. Shi, Y. Li, F.J. Meng, Y.G. Zhou, Org. Biomol. Chem. 17 (2019) 6364-6368;
      (c) Z.B. Zhao, L. Shi, F.J. Meng, Y. Li, Y.G. Zhou, Org. Chem. Front. 6 (2019) 1572-1576.

  • 加载中
    1. [1]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    2. [2]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    3. [3]

      Yang FengYang-Qing TianYong-Qiang ZhaoSheng-Jun ChenBi-Feng Yuan . Dynamic deformylation of 5-formylcytosine and decarboxylation of 5-carboxylcytosine during differentiation of mouse embryonic stem cells into mouse neurons. Chinese Chemical Letters, 2024, 35(11): 109656-. doi: 10.1016/j.cclet.2024.109656

    4. [4]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    5. [5]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    6. [6]

      Wenling YuanFengli LiZhe ChenQiaoxin XuZhenhua GuanNanyu YaoZhengxi HuJunjun LiuYuan ZhouYing YeYonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788

    7. [7]

      Le ZhangHui-Yu XieXin LiLi-Ying SunYing-Feng Han . SOMO-HOMO level conversion in triarylmethyl-cored N-heterocyclic carbene-Au(I) complexes triggered by selecting coordination halogens. Chinese Chemical Letters, 2024, 35(11): 109465-. doi: 10.1016/j.cclet.2023.109465

    8. [8]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    9. [9]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    10. [10]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    11. [11]

      Yutong Xiong Ting Meng Wendi Luo Bin Tu Shuai Wang Qingdao Zeng . Molecular conformational effects on co-assembly systems of low-symmetric carboxylic acids investigated by scanning tunneling microscopy. Chinese Journal of Structural Chemistry, 2025, 44(2): 100511-100511. doi: 10.1016/j.cjsc.2025.100511

    12. [12]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    13. [13]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    14. [14]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    15. [15]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    16. [16]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    17. [17]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    18. [18]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    19. [19]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    20. [20]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

Metrics
  • PDF Downloads(5)
  • Abstract views(523)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return