Citation: Zhonghua Qu, Pu Wang, Xing Chen, Guo-Jun Deng, Huawen Huang. Visible-light-driven Cadogan reaction[J]. Chinese Chemical Letters, ;2021, 32(8): 2582-2586. doi: 10.1016/j.cclet.2021.02.047 shu

Visible-light-driven Cadogan reaction

    * Corresponding author.
    E-mail address: hwhuang@xtu.edu.cn (H. Huang).
  • Received Date: 3 January 2021
    Revised Date: 21 February 2021
    Accepted Date: 22 February 2021
    Available Online: 25 February 2021

Figures(7)

  • Visible-light-driven photochemical Cadogan-type cyclization has been discovered. The organic D-A type photosensitizer 4CzIPN found to be an efficient mediator to transfer energy from photons to the transient intermediate that breaks the barriers of deoxygenation in Cadogan reaction and enables a mild metal-free access to carbazoles and related heterocycles. DFT calculation results indicate mildly endergonic formation of the intermediate complex of nitrobiarenes and PPh3, which corresponds with experimental findings regarding reaction temperature. The robust synthetic capacity of the photoredox Cadogan reaction systems has been demonstrated by the viable productivity of a broad range of carbazoles and related N-heterocycles with good tolerance of various functionalities.
  • 加载中
    1. [1]

      (a) A.W. Schmidt, K.R. Reddy, H.J. Knolker, Chem. Rev. 112 (2012) 3193–3328;
      (b) T. Janosik, A. Rannug, U. Rannug, et al., Chem. Rev. 118 (2018) 9058–9128.

    2. [2]

      (a) D. Gendron, M. Leclerc, Energy Environ. Sci. 4 (2011) 1225–1237;
      (b) Y. Ooyama, S. Inoue, T. Nagano, et al., Angew. Chem. Int. Ed. 50 (2011) 7429-7433;
      (c) Z. He, C. Zhang, X. Xu, et al., Adv. Mater. 23 (2011) 3086–3089;
      (d) M.S. Gong, J.R. Cha, C.W. Lee, Org. Electron. 42 (2017) 66–74.

    3. [3]

      (a) G.R. Humphrey, J.T. Kuethe, Chem. Rev. 106 (2006) 2875–2911;
      (b) D.F. Taber, P.K. Tirunahari, Tetrahedron 67 (2011) 7195–7210;
      (c) J. Roy, A.K. Jana, D. Mal, Tetrahedron 68 (2012) 6099–6121;
      (d) W.C.P. Tsang, R.H. Munday, G. Brasche, et al., J. Org. Chem. 73 (2008) 7603–7610;
      (e) S.H. Cho, J. Yoon, S. Chang, J. Am. Chem. Soc. 133 (2011) 5996–6005;
      (f) H. Gao, Q.L. Xu, M. Yousufuddin, et al., Angew. Chem. Int. Ed. 53 (2014) 2701–2705;
      (g) J.Y. Chen, C.T. Zhong, Q.W. Gui, et al., Chin. Chem. Lett. 32 (2021) 475–479.

    4. [4]

      B.P. Mundy, M.G. Ellerd, J.G. Frank Favaloro, Name Reactions and Reagents in Organic Synthesis, 2nd Ed., John Wiley & Sons, Inc., 2005.

    5. [5]

      (a) A. Kaga, S. Chiba, ACS Catal. 7 (2017) 4697–4706;
      (b) J.K. Matsui, S.B. Lang, D.R. Heitz, et al., ACS Catal. 7 (2017) 2563–2575;
      (c) H. Yi, G. Zhang, H. Wang, et al., Chem. Rev. 117 (2017) 9016–9085.

    6. [6]

      (a) P. Muller, C. Fruit, Chem. Rev. 103 (2003) 2905–2919;
      (b) M.P. Doyle, R. Duffy, M. Ratnikov, et al., Chem. Rev. 110 (2010) 704–724;
      (c) D. Huang, G. Yan, Adv. Synth. Catal. 359 (2017) 1600–1619;
      (d) C. Wentrup, Chem. Rev. 117 (2017) 4562–4623.

    7. [7]

      (a) P. Gandeepan, T. Muller, D. Zell, et al., Chem. Rev. 119 (2019) 2192–2452;
      (b) Y. Park, Y. Kim, S. Chang, Chem. Rev. 117 (2017) 9247–9301;
      (c) J. Jiao, K. Murakami, K. Itami, ACS Catal. 6 (2015) 610–633.

    8. [8]

      (a) R.J. Sundberg, L.S. Lin, D.E. Blackburn, J. Heterocycl. Chem. 6 (1969) 441;
      (b) R.J. Sundberg, H.F. Russell, W.V. Ligon, et al., J. Org. Chem. 38 (1972) 719–724.

    9. [9]

      (a) P.J. Bunyan, J.I.G. Cadogan, J. Chem. Soc. (1963) 42–49;
      (b) J.I.G. Cadogan, M. Cameron-Wood, R.K. Mackie, et al., J. Chem. Soc. (1965) 4831–4837;
      (c) J.I.G. Cadogan, Q. Rev., Chem. Soc. 22 (1968) 222–251;
      (d) R. Sanz, J. Escribano, M.R. Pedrosa, et al., Adv. Synth. Catal. 349 (2007) 713–718;
      (e) F. Martínez-Lara, A. Suárez, S. Suárez-Pantiga, et al., Org. Chem. Front. 7 (2020) 1869–1877.

    10. [10]

      A.W. Freeman, M. Urvoy, M.E. Criswell, J. Org. Chem. 70 (2005) 5014–5019.  doi: 10.1021/jo0503299

    11. [11]

      (a) N.E. Genung, L. Wei, G.E. Aspnes, Org. Lett. 16 (2014) 3114–3117;
      (b) F. Zhou, D.S. Wang, T.G. Driver, Adv. Synth. Catal. 357 (2015) 3463–3468;
      (c) M. Shevlin, X. Guan, T.G. Driver, ACS Catal. 7 (2017) 5518–5522;
      (d) H. Song, Z. Yang, C.H. Tung, W. Wang, ACS Catal. 10 (2020) 276–281.

    12. [12]

      (a) T.V. Nykaza, T.S. Harrison, A. Ghosh, et al., J. Am. Chem. Soc. 139 (2017) 6839–6842;
      (b) T.V. Nykaza, A. Ramirez, T.S. Harrison, et al., J. Am. Chem. Soc. 140 (2018) 3103–3113;
      (c) G. Li, T.V. Nykaza, J.C. Cooper, et al., J. Am. Chem. Soc. 142 (2020) 6786–6799.

    13. [13]

      (a) T. Bach, J.P. Hehn, Angew. Chem. Int. Ed. 50 (2011) 1000–1045;
      (b) D.M. Schultz, T.P. Yoon, Science 343 (2014) 1239176;
      (c) J. Xuan, W.J. Xiao, Angew. Chem. Int. Ed. 51 (2012) 6828–6838;
      (d) T.P. Yoon, M.A. Ischay, J. Du, Nat. Chem. 2 (2010) 527–532;
      (e) C.K. Prier, D.A. Rankic, D.W. MacMillan, Chem. Rev. 113 (2013) 5322–5363;
      (f) W.B. He, L.Q. Gao, X.J. Chen, et al., Chin. Chem. Lett. 31 (2020) 1895–1898;
      (g) W. Yang, B. Li, M. Zhang, et al., Chin. Chem. Lett. 31 (2020) 1313–1316;
      (h) S. He, X. Chen, F. Zeng, et al., Chin. Chem. Lett. 31 (2020) 1863–1867;
      (i) G.H. Li, Q.Q. Han, Y.Y. Sun, et al., Chin. Chem. Lett. 31 (2020) 3255–3258;
      (j) X. Mi, Y. Kong, J. Zhang, et al., Chin. Chem. Lett. 30 (2019) 2295–2298;
      (k) C. Wang, X. Huang, X. Liu, et al., Chin. Chem. Lett. 31 (2020) 677–680;
      (l) L. Wang, M. Zhang, Y. Zhang, et al., Chin. Chem. Lett. 31 (2020) 67–70;
      (m) W. Xiao, J. Wu, Chin. Chem. Lett. 31 (2020) 3083–3094.

    14. [14]

      (a) A.C. Hernandez-Perez, S.K. Collins, Angew. Chem. Int. Ed. 52 (2013) 12696–12700;
      (b) S. Choi, T. Chatterjee, W.J. Choi, et al., ACS Catal. 5 (2015) 4796–4802;
      (c) A.C. Hernandez-Perez, A. Caron, S.K. Collins, Chem. Eur. J. 21 (2015) 16673–16678;
      (d) S. Parisien-Collette, A.C. Hernandez-Perez, S.K. Collins, Org. Lett. 18 (2016) 4994–4997;
      (e) T. Chatterjee, G.B. Roh, M.A. Shoaib, et al., Org. Lett. 19 (2017) 1906–1909;
      (f) J. Shen, N. Li, Y. Yu, et al., Org. Lett. 21 (2019) 7179–7183.

    15. [15]

      (a) X.D. Xia, J. Xuan, Q. Wang, et al., Adv. Synth. Catal. 356 (2014) 2807–2812;
      (b) S. Parisien-Collette, C. Cruché, X. Abel-Snape, et al., Green Chem. 19 (2017) 4798–4803;
      (c) L. Yang, Y. Zhang, X. Zou, et al., Green Chem. 20 (2018) 1362–1366.

    16. [16]

      (a) C. Lu, Z. Su, D. Jing, et al., Org. Lett. 21 (2019) 1438–1443;
      (b) S. Peng, Y. Lin, W. He, Chin. J. Org. Chem. 40 (2020) 541;
      (c) Z. Wang, Q. Liu, X. Ji, et al., ACS Catal. 10 (2020) 154–159;
      (d) W. Ou, R. Zou, M. Han, et al., Chin. Chem. Lett. 31 (2020) 1899–1902;
      (e) H. Huang, K. Deng, G.J. Deng, Green Chem. 22 (2020) 8243–8247;
      (f) X. Ji, Q. Liu, Z. Wang, et al., Green Chem. 22 (2020) 8233–8237.

    17. [17]

      (a) E. Arceo, I.D. Jurberg, A. Alvarez-Fernandez, et al., Nat. Chem. 5 (2013) 750–756;
      (b) S.R. Kandukuri, A. Bahamonde, I. Chatterjee, et al., Angew. Chem. Int. Ed. 54 (2015) 1485–1489;
      (c) L. Wozniak, J.J. Murphy, P. Melchiorre, J. Am. Chem. Soc. 137 (2015) 5678–5681;
      (d) A. Fawcett, J. Pradeilles, Y. Wang, et al., Science 357 (2017) 283–286;
      (e) J. Wu, L. He, A. Noble, et al., J. Am. Chem. Soc. 140 (2018) 10700–10704.

    18. [18]

      G. Pandey, D. Pooranch, U.T. Bhalerao, Tetrahedron 47 (1991) 1745–1752.  doi: 10.1016/S0040-4020(01)96916-9

    19. [19]

      J. Luo, J. Zhang, ACS Catal. 6 (2016) 873–877.  doi: 10.1021/acscatal.5b02204

  • 加载中
    1. [1]

      Guanyang Zeng Xingqiang Liu Liangqiao Wu Zijie Meng Debin Zeng Changlin Yu . Novel visible-light-driven I- doped Bi2O2CO3 nano-sheets fabricated via an ion exchange route for dye and phenol removal. Chinese Journal of Structural Chemistry, 2024, 43(12): 100462-100462. doi: 10.1016/j.cjsc.2024.100462

    2. [2]

      Ruiheng LiangHuizhong WuZhongzheng HuGe SongXuyang ZhangOmotayo A. ArotibaMinghua Zhou . Hierarchical Fe-Bi/Bi7O9I3/OVs microspheres coupled with natural air diffusion electrode to achieve efficient heterogeneous visible-light-driven photoelectro-Fenton degradation of tetracycline without aeration. Chinese Chemical Letters, 2025, 36(4): 110136-. doi: 10.1016/j.cclet.2024.110136

    3. [3]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    4. [4]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    5. [5]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    6. [6]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    7. [7]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    8. [8]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    9. [9]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    10. [10]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    11. [11]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    12. [12]

      Yan GuoHongtao BianLe YuJiani MaYu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971

    13. [13]

      Ruike HuKangmin WangJunxiang LiuJingxian ZhangGuoliang YangLiqiu WanBijin Li . Extended π-conjugated systems by external ligand-assisted C−H olefination of heterocycles: Facile access to single-molecular white-light-emitting and NIR fluorescence materials. Chinese Chemical Letters, 2025, 36(4): 110113-. doi: 10.1016/j.cclet.2024.110113

    14. [14]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    15. [15]

      Dong-Sheng DengSu-Qin TangYong-Tu YuanDing-Xiong XieZhi-Yuan ZhuYue-Mei HuangYun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417

    16. [16]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    17. [17]

      Yi ZhouYanzhen LiuYani YanZonglin YiYongfeng LiCheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569

    18. [18]

      Chenhao ZhangQian ZhangYezhou HuHanyu HuJunhao YangChang YangYe ZhuZhengkai TuDeli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429

    19. [19]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    20. [20]

      Quanyou GuoYue YangTingting HuHongqi ChuLijun LiaoXuepeng WangZhenzi LiLiping GuoWei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235

Metrics
  • PDF Downloads(19)
  • Abstract views(894)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return