Citation: Xiaohan Chen, Ran Zhao, Ziqiang Liu, Shutao Sun, Yingang Ma, Qingyun Liu, Xia Sun, Lei Liu. Redox deracemization of α-substituted 1, 3-dihydroisobenzofurans[J]. Chinese Chemical Letters, ;2021, 32(7): 2305-2308. doi: 10.1016/j.cclet.2021.02.021 shu

Redox deracemization of α-substituted 1, 3-dihydroisobenzofurans

    * Corresponding author at: School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China.
    ** Corresponding authors.
    E-mail addresses: qyliu@sdust.edu.cn (Q. Liu), sunxia@sdu.edu.cn (X. Sun), leiliu@sdu.edu.cn (L. Liu).
    1 These two authors contributed equally to this work.
  • Received Date: 8 December 2020
    Revised Date: 4 February 2021
    Accepted Date: 9 February 2021
    Available Online: 16 February 2021

Figures(5)

  • Chiral α-substituted 1, 3-dihydroisobenzofurans are key scaffolds in a number of bioactive natural products and synthetic pharmaceuticals. However, catalytic asymmetric approaches have been rarely developed. Here, a redox deracemization technology is adopted to address the catalytic asymmetric synthesis. A broad range of α-aryl substituted 1, 3-dihydroisobenzofurans are effectively deracemized in high efficiency with excellent ee. α-Alkynyl substituted ethers were also compatible with the deracemization technology.
  • 加载中
    1. [1]

      (a) V.J. Bauer, B.J. Duffy, D. Hoffman, et al., J. Med. Chem. 19 (1976) 1315-1324;
      (b) E.G. Maestrup, C. Wiese, D. Schepmann, et al., Bioorg. Med. Chem. 19 (2011) 393-405.

    2. [2]

      (a) I. Čorić, J.H. Kim, T. Vlaar, et al., Angew. Chem. Int. Ed. 52 (2013) 3490-3493;
      (b) B. Ravindra, B.G. Das, P. Ghorai, Org. Lett. 16 (2014) 5580-5583;
      (c) D. Chen, S.R. Chemler, Org. Lett. 20 (2018) 6453-6456;
      (d) D. Chen, I.A. Berhane, S.R. Chemler, Org. Lett. 22 (2020) 7409-7414.

    3. [3]

      N.M. Weldy, A.G. Schafer, C.P. Owens, et al., Chem. Sci. 7 (2016) 3142-3146.  doi: 10.1039/C6SC00190D

    4. [4]

      (a) S. Sun, Y. Ma, Z. Liu, L. Liu, Angew. Chem. Int. Ed. 60 (2021) 176-180;
      (b) S. Sun, Y. Yang, R. Zhao, D. Zhang, L. Liu, J. Am. Chem. Soc. 142 (2020) 19346-19353.

    5. [5]

      (a) K. Faber, Chem. Eur. J. 7 (2001) 5004-5010;
      (b) C.C. Gruber, I. Lavandera, K. Faber, W. Kroutil, Adv. Synth. Catal. 348 (2006) 1789-1805;
      (c) N.J. Turner, Curr. Opin. Chem. Biol. 14 (2010) 115-121;
      (d) M. Rachwalski, N. Vermue, F.P.J.T. Rutjes, Chem. Soc. Rev. 42 (2013) 9268-9282;
      (e) R.C. Simon, N. Richter, E. Busto, W. Kroutil, ACS Catal. 4 (2014) 129-143.

    6. [6]

      (a) A. Hölzl-Hobmeier, A. Bauer, A.V. Silva, et al., Nature 564 (2018) 240-243;
      (b) A. Tröster, A. Bauer, C. Jandl, T. Bach, Angew. Chem. Int. Ed. 58 (2019) 3538-3541;
      (c) N.Y. Shin, J.M. Ryss, X. Zhang, et al., Science 366 (2019) 364-369.

    7. [7]

      (a) C.V. Voss, C.C. Gruber, W. Kroutil, Angew. Chem. Int. Ed. 47 (2008) 741-745;
      (b) C.V. Voss, C.C. Gruber, K. Faber, et al., J. Am. Chem. Soc. 130 (2008) 13969-13972;
      (c) C.J. Dunsmore, R. Carr, T. Fleming, et al., J. Am. Chem. Soc. 128 (2006) 2224-2225;
      (d) D. Ghislieri, A.P. Green, M. Pontini, et al., J. Am. Chem. Soc. 135 (2013) 10863-10869;
      (e) K. Yasukawa, S. Nakano, Y. Asano, Angew. Chem. Int. Ed. 53 (2014) 4428-4431.

    8. [8]

      (a) Y. Shimada, Y. Miyake, H. Matsuzawa, et al., Chem. Asian J. 2 (2007) 393-396;
      (b) G.R.A. Adair, J.M.J. Williams, Chem. Commun (2007) 2608-2609;
      (c) P. Qu, M. Kuepfert, S. Jockusch, et al., ACS Catal. 9 (2019) 2701-2706;
      (d) A.D. Lackner, A.V. Samant, F.D. Toste, J. Am. Chem. Soc. 135 (2013) 14090-14093;
      (e) Y. Ji, L. Shi, M.W. Chen, et al., J. Am. Chem. Soc. 137 (2015) 10496-10499;
      (f) L. Zhang, R. Zhu, A. Feng, et al., Chem. Sci. 11 (2020) 4444-4449.

    9. [9]

      (a) Y. Mao, Z. Wang, G. Wang, et al., ACS Catal. 10 (2020) 7785-7791;
      (b) Y. Ma, X. Liu, Y. Mao, et al., Org. Chem. Front. 7 (2020) 2526-2530.

    10. [10]

      M. Wan, S. Sun, Y. Li, et al., Angew. Chem. Int. Ed. 56 (2017) 5116-5120.  doi: 10.1002/anie.201701439

    11. [11]

      (a) T. Akiyama, Chem. Rev. 107 (2007) 5744-5758;
      (b) M. Terada, Synthesis 42 (2010) 1929-1982;
      (c) D. Parmar, E. Sugiono, S. Raja, et al., Chem. Rev. 114 (2014) 9047-9153;
      (d) I. Cori Čorić, B. List, Nature 483 (2012) 315-319;
      (e) C. Zheng, S.L. You, Chem. Soc. Rev. 41 (2012) 2498-2518;
      (f) D. Wang, D. Astruc, Chem. Rev. 115 (2015) 6621-6686.

    12. [12]

      (a) R. Zhao, G. Feng, X. Xin, et al., Chin. Chem. Lett. 30 (2019) 1432-1434;
      (b) Z. Wang, Y. Mao, H. Guan, et al., Chin. Chem. Lett. 30 (2019) 1241-1243;
      (c) P. Ye, X. Liu, G. Wang, L. Liu, Chin. Chem. Lett. 32 (2021) 1237-1240;
      (d) H. Guan, L. Chen, L. Liu, Acta Chim. Sinica 76 (2018) 440-444.

  • 加载中
    1. [1]

      Pengbo YeXuan LiuGang WangLei Liu . Nickel(Ⅱ)-catalyzed asymmetric alkylation of acyclic oxocarbenium ions with carboxylic acid derivatives. Chinese Chemical Letters, 2021, 32(3): 1237-1240. doi: 10.1016/j.cclet.2020.08.034

    2. [2]

      Xu Dong LIU Meng Xian DING Lian Xun GAO . Synthesis and Catalytic Application of Chiral 1, 1'-Binaphthyl Polymers. Chinese Chemical Letters, 2004, 15(1): 32-34.

    3. [3]

      Chen ZhengFen-Er Chen . Asymmetric catalytic anhydride openings via carbon-based nucleophiles. Chinese Chemical Letters, 2014, 25(1): 1-8.

    4. [4]

      Min JiangHai-Jun YangYong LiZhi-Ying JiaHua Fu . Metal-free synthesis of substituted phenols from arylboronic acids in water at room temperature. Chinese Chemical Letters, 2014, 25(05): 715-719. doi: 10.1016/j.cclet.2014.03.018

    5. [5]

      Ya-Qing XuShen-Luan YuYan-Yun LiZhen-Rong DongJing-Xing Gao . Novel chiral C2-symmetric multidentate aminophosphine ligands for use in catalytic asymmetric reduction of ketones. Chinese Chemical Letters, 2013, 24(6): 527-530.

    6. [6]

      Cao Shi-XuanWang Jia-XiHe Zheng-Jie . Magnetic nanoparticles supported cinchona alkaloids for asymmetric Michael addition reaction of 1, 3-dicarbonyls and maleimides. Chinese Chemical Letters, 2018, 29(1): 201-204. doi: 10.1016/j.cclet.2017.06.022

    7. [7]

      Meng TaoFang WuTeng LiYan-Yun LiJing-Xing Gao . Novel chiral multidentate P3N4-type ligand for asymmetric transfer hydrogenation of aromatic ketones. Chinese Chemical Letters, 2017, 28(1): 97-100. doi: 10.1016/j.cclet.2016.05.028

    8. [8]

      Liang Yin Chao Feng Wang Huan Ling Wang Rong Li Jian Tai Ma . Novel Fréchet-type dendritic BINOL ligands and their applications in Ti (Ⅳ) complex catalyzed asymmetric addition of diethylzinc to aldehydes. Chinese Chemical Letters, 2007, 18(12): 1487-1489. doi: 10.1016/j.cclet.2007.10.014

    9. [9]

      Xu Xin-MingChen De-MaoWang Zu-Li . Recent advances in sulfenylation of C(sp3)-H bond under transition metal-free conditions. Chinese Chemical Letters, 2020, 31(1): 49-57. doi: 10.1016/j.cclet.2019.05.048

    10. [10]

      Sheng-Jian JiaDa-Ming Du . Enantioselective chlorination ofb-keto esters and amides catalyzed by chiral copper(Ⅱ) complexes of squaramide-linked bisoxazoline ligand. Chinese Chemical Letters, 2014, 25(11): 1479-1484. doi: 10.1016/j.cclet.2014.06.023

    11. [11]

      Long-Duo ZhangCui-Fen LuZu-Xing ChenGui-Chun YangJun-Qi Nie . Diastereoselective alkylation reactions employing a new camphor-based 2-phenylimino-2-oxazolidine chiral auxiliary. Chinese Chemical Letters, 2014, 25(11): 1466-1468. doi: 10.1016/j.cclet.2014.05.044

    12. [12]

      Chun-Hua LuSima DarvishiVahid KhakyzadehChangkun Li . Pd-Catalyzed enantioselective synthesis of 2-methyl-3-methyleneindoline. Chinese Chemical Letters, 2021, 32(1): 405-407. doi: 10.1016/j.cclet.2020.02.056

    13. [13]

      Suo Jia-JiaDu JuanJiang Yang-JieChen DiDing Chang-HuaHou Xue-Long . Diastereo- and enantioselective palladium-catalyzed dearomative [4+2] cycloaddition of 3-nitroindoles. Chinese Chemical Letters, 2019, 30(8): 1512-1514. doi: 10.1016/j.cclet.2019.04.028

    14. [14]

      . Concise synthesis of valuable chiral N-Boc-β-benzyl-β-amino acid via construction of chiral N-Boc-3-benzyl-5-oxoisoxazolidine through cross-metathesis/conjugate addition/oxidation. Chinese Chemical Letters, 2017, 28(2): 471-475. doi: 10.1016/j.cclet.2016.10.005

    15. [15]

      Zhang ShengLi YananXu YouguoWang Zhiyong . Recent progress in copper catalyzed asymmetric Henry reaction. Chinese Chemical Letters, 2018, 29(6): 873-883. doi: 10.1016/j.cclet.2017.10.001

    16. [16]

      Liang Xiao-WeiChen XiaolingZhang ZhiguoYou Shu-Li . Catalytic asymmetric brominative dearomatization reaction of benzofurans. Chinese Chemical Letters, 2018, 29(8): 1212-1214. doi: 10.1016/j.cclet.2018.01.039

    17. [17]

      Guang-Ya ZhangSun-Hong RuanYan-Yun LiJing-Xing Gao . Manganese catalyzed asymmetric transfer hydrogenation of ketones. Chinese Chemical Letters, 2021, 32(4): 1415-1418. doi: 10.1016/j.cclet.2020.10.023

    18. [18]

      En-Ze LinYin XuKegong JiLong-Wu Ye . Recent advances towards catalytic asymmetric Conia-ene-type reactions. Chinese Chemical Letters, 2021, 32(3): 954-962. doi: 10.1016/j.cclet.2020.08.012

    19. [19]

      Xian-Dong ZhaiZhong-Duo YangZhi LuoHong-Tao Xu . Asymmetric catalyzed intramolecular aza-Michael reaction mediated by quinine-derived primary amines. Chinese Chemical Letters, 2017, 28(8): 1793-1797. doi: 10.1016/j.cclet.2017.04.017

    20. [20]

      Sun HaiyunLi YuanLiu WeiZheng YangHe Zhengjie . Organocatalytic asymmetric cascade cyclization reaction of o-hydroxy cinnamaldehydes with diphenylphosphine oxide. Chinese Chemical Letters, 2018, 29(11): 1625-1628. doi: 10.1016/j.cclet.2018.01.026

Metrics
  • PDF Downloads(0)
  • Abstract views(5)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return