Citation: Peihui Shan, Ruilian Lin, Ming Liu, Zhu Tao, Xin Xiao, Jingxin Liu. Recognition of glycine by cucurbit[5]uril and cucurbit[6]uril: A comparative study of exo- and endo-binding[J]. Chinese Chemical Letters, ;2021, 32(7): 2301-2304. doi: 10.1016/j.cclet.2021.02.020 shu

Recognition of glycine by cucurbit[5]uril and cucurbit[6]uril: A comparative study of exo- and endo-binding

    * Corresponding authors.
    E-mail addresses: gyhxxiaoxin@163.com (X. Xiao), jxliu411@ahut.edu.cn (J. Liu).
  • Received Date: 11 November 2020
    Revised Date: 3 February 2021
    Accepted Date: 9 February 2021
    Available Online: 12 February 2021

Figures(7)

  • Recognition features of glycine (Gly) with cucurbit[5]uril (Q[5]) and cucurbit[6]uril (Q[6]) both in aqueous solution and solid state were investigated by 1H NMR spectroscopy and X-ray crystallography. 1H NMR data indicate that the Gly is located outside of the portals of the Q[5], exhibiting exo binding with the Q[5]. In the case of the Q[6], the Gly shows endo binding or a dual binding mode (endo and exo binding) with the host, which depends on the amount of the host in the aqueous solution. X-ray crystallography clearly display that the Gly forms 2:1 exclusion complex with the Q[5], and 2:1 inclusion complex with the Q[6]. Interestingly, hydrogen bondings between the encapsulated Gly molecules in the Q[6] were observed.
  • 加载中
    1. [1]

      (a) M. Freidman, J. Agric. Food Chem. 47 (1999) 3457-3479;
      (b) Y. Zhou, J. Yoon, Chem. Soc. Rev. 41 (2012) 52-67;
      (c) H. Heli, M. Hajjizadeh, A. Jabbari, A. Moosavi-Movahedi, Anal. Biochem. 388 (2009) 81-90;
      (d) Q.P. Duan, Y. Cao, Y. Li, et al., J. Am. Chem. Soc. 135 (2013) 10542-10549;
      (e) B.B. Shi, K.C. Jie, Y.J. Zhou, et al., J. Am. Chem. Soc. 138 (2016) 80-83;
      (f) G.C. Yu, G.P. Tang, F.H. Huang, J. Mater. Chem. C 2 (2014) 6609-6617;
      (g) G.C. Yu, D. Wu, Y. Li, et al., Chem. Sci. 7 (2016) 3017-3024;
      (h) Y. Cao, X.Y. Hu, Y. Li, et al., J. Am. Chem. Soc. 136 (2014) 10762-10769;
      (i) M. Liu, J.L. Kan, Y.Q. Yao, et al., Sensors Actuators B: Chem. 283 (2019) 290-297;
      (j) R.H. Gao, L.X. Chen, K. Chen, Z. Tao, X. Xiao, Coord. Chem. Rev. 348 (2017) 1–24.

    2. [2]

      (a) C.B. Lebrilla, Acc. Chem. Res. 34 (2001) 653-661;
      (b) W. Si, P. Xin, Z.T. Li, J.L. Hou, Acc. Chem. Res. 48 (2015) 1612–1619;
      (c) A. Casnati, F. Sansone, R. Ungaro, Acc. Chem. Res. 36 (2003) 246-254;
      (d) K. Yang, Y. Pei, J. Wen, Z. Pei, Chem. Commun. 52 (2016) 9316–9326;
      (e) M. Giuliani, I. Morbioli, F. Sansone, A. Casnati, Chem. Commun. 51 (2015)14140–14159;
      (f) R. Pinalli, A. Pedrini, E. Dalcanale, Chem. Soc. Rev. 47 (2018) 7006-7026.

    3. [3]

      (a) A.R. Urbach, V. Isr. Ramalingam, J. Chem. 51 (2011) 664;
      (b) A.T. Wright, M.J. Griffin, Z.L. Zhong, et al., Angew. Chem. Int. Ed. 44 (2005) 6375-6378;
      (c) Q.H. Bai, S.W. Zhang, H.R. Chen, et al., ChemistrySelect 2 (2017) 2569-2573.

    4. [4]

      (a) T.B. Wei, J.F. Chen, X.B. Cheng, et al., Org. Chem. Front. 4 (2017) 210-213;
      (b) L. Chen, W. Si, L. Zhang, et al., J. Am. Chem. Soc. 135 (2013) 2152-2155;
      (c) S. Tashiro, M. Tominaga, M. Kawano, et al., J. Am. Chem. Soc. 127 (2005) 4546-4547;
      (d) P. Wang, Z.T. Li, X.F. Ji, Chem. Commun. 50 (2014) 13114-13116;
      (e) C.J. Li, J.W. Ma, L. Zhao, et al., Chem. Commun. 49 (2013) 1924-1926;
      (f) B. Hua, J. Zhou, G.C. Yu, Tetrahedron Lett. 56 (2015) 986-989.

    5. [5]

      (a) J.P. Chinta, A. Acharya, A. Kumar, C.P. Rao, J. Phys. Chem. B 113 (2009) 12075-12083;
      (b) R.K. Pathak, J. Dessingou, C.P. Rao, Anal. Chem. 84 (2012) 8294-8300;
      (c) R.K. Pathak, V.K. Hinge, K. Mahesh, et al., Anal. Chem. 84 (2012) 6907-6913;
      (d) J. Dessingou, A. Mitra, K. Tabbasum, G.S. Baghel, C.P. Rao, J. Org. Chem. 77 (2012) 371-378;
      (e) R. Joseph, B. Ramanujam, A. Acharya, C.P. Rao, J. Org. Chem. 74 (2009) 8181-8190.

    6. [6]

      (a) J. Lagona, P. Mukhopadhyay, S. Chakrabarti, L. Isaacs, Angew. Chem. Int. Ed. 44 (2005) 4844-4870;
      (b) X.L. Ni, X. Xiao, H. Cong, et al., Chem. Soc. Rev. 42 (2013) 9480-9508;
      (c) E. Masson, X. Ling, R. Joseph, L. Kyeremeh-Mensah, X. Lu, RSC Adv. 2 (2012) 1213-1247;
      (d) K.I. Assaf, W.M. Nau, Chem. Soc. Rev. 44 (2015) 394-418;
      (e) S.J. Barrow, S. Kasera, M.J. Rowland, J. Barrio, O.A. Scherman, Chem. Rev. 115 (2015) 12320-12406;
      (f) X.L. Ni, S.Y. Chen, Y.P. Yang, Z. Tao, J. Am. Chem. Soc. 138 (2016) 6177-6183.

    7. [7]

      (a) L.A. Logsdon, C.L. Schardon, V. Ramalingam, S.K. Kwee, A.R. Urbach, J. Am. Chem. Soc. 133 (2011) 17087-17092;
      (b) J.M. Chinai, A.B. Taylor, L.M. Ryno, et al., J. Am. Chem. Soc. 133 (2011) 8810-8813;
      (c) L.A. Logsdon, A.R. Urbach, J. Am. Chem. Soc. 135 (2013) 11414-11416;
      (d) L.C. Smith, D.G. Leach, B.E. Blaylock, O.A. Ali, A.R. Urbach, J. Am. Chem. Soc. 137 (2015) 3663-3669.

    8. [8]

      (a) M.V. Rekharsky, H. Yamamura, Y.H. Ko, et al., Chem. Commun. (2008) 2236-2238;
      (b) W.J. Kim, K. Kim, H.I. Kim, Angew. Chem. Int. Ed. 126 (2014) 7591-7595;
      (c) J.W. Lee, H.H.L. Lee, Y.H. Ko, K. Kim, H.I. Kim, J. Phys. Chem. B 119 (2015) 4628-4636;
      (d) L.T. Li, M. Liu, L.D. Yue, et al., Anal. Chem. 92 (2020) 9322-9329;
      (e) L.D. Yue, C. Sun, Q. Cheng, et al., Chem. Commun. 55 (2019) 13506-13509;
      (f) S. Combes, K.T. Tran, M.M. Ayhan, et al., J. Am. Chem. Soc. 141 (2019) 5897-5907.

    9. [9]

      (a) A. Hennig, H. Bakirci, W.M. Nau, Nat. Methods 4 (2007) 629-632;
      (b) D.M. Bailey, A. Hennig, V.D. Uzunova, W.M. Nau, Chem. Eur. J. 14 (2008) 6069-6077;
      (c) A. Praetorius, D.M. Bailey, T. Schwarzlose, W.M. Nau, Org. Lett. 10 (2008) 4089-4092;
      (d) W.M. Nau, G. Ghale, A. Hennig, H. Bakirci, D.M. Bailey, J. Am. Chem. Soc. 131 (2009) 11558-11570;
      (e) H. Yin, X.J. Zhang, J.W. Wei, et al., Theranostics 11 (2021) 1513-1526;
      (f) H. Yin, D. Bardelang, R.B. Wang, Trends Analyt. Chem. 3 (2021) 1-4.

    10. [10]

      M. Pozo, P. Hernàndez, L. Hernàndez, C.J. Quintana, Mater. Chem. 21 (2011) 13657–13663.

    11. [11]

      (a) S. Sonzini, T.J.S. Ryan, O.A. Scherman, Chem. Commun. 49 (2013) 8779-8781;
      (b) K.I. Kuok, S.K. Li, Ian W. Wyman, R.B. Wang, Ann. N.Y. Acad. Sci. 1398 (2017) 108-119.

    12. [12]

      M.A. Gamal-Eldin, D.H. Macartney, Org. Biomol. Chem. 11 (2013) 488-495.  doi: 10.1039/C2OB27007B

    13. [13]

      T. Minami, N.A. Esipenko, B. Zhang, L. Isaacs, P. Anzenbacher Jr, Chem. Commun. 50 (2014) 61–63.  doi: 10.1039/C3CC47416J

    14. [14]

      Y. He, Y. Liang, H. Yu, ACS Comb. Sci. 17 (2015) 409-412.  doi: 10.1021/acscombsci.5b00045

    15. [15]

      (a) D.T. Dang, H.D. Nguyen, M. Merkx, L. Brunsveld, Angew. Chem. Int. Ed. 52 (2013) 2915-2919;
      (b) H.D. Nguyen, D.T. Dang, J.L.J. van Dongen, L. Brunsveld, Angew. Chem. Int. Ed. 49 (2010) 895-898.

    16. [16]

      O. Danylyuk, V.P. Fedin, Cryst. Growth Des. 12 (2012) 550-555.  doi: 10.1021/cg2013914

    17. [17]

      (a) P. Thuéry, Inorg. Chem. 50 (2011) 10558-10560;
      (b) P. Thuéry, CrystEngComm 14 (2012) 8128-8136.

    18. [18]

      (a) J.M. Yi, Y.Q. Zhang, H. Cong, S.F. Xue, Z. Tao, J. Mol. Struct. 933 (2009) 112-117;
      (b) P.H. Shan, S.C. Tu, R.L. Lin, et al., CrystEngComm 19 (2017) 2168-2171;
      (c) T. Yin, S. Zhang, M.X. Li, C. Redshaw, X.L. Ni, Sens. Actuator. 281 (2019) 568-573.

    19. [19]

      (a) K. Moon, A.E. Kaifer, Org. Lett. 6 (2004) 185;
      (b) A.E. Kaifer, Acc. Chem. Res. 47 (2014) 2160-2167;
      (c) R.L. Lin, J.Q. Li, J.X. Liu, A.E. Kaifer, J. Org. Chem. 80 (2015) 10505-10511.

    20. [20]

      (a) Y.X. Qu, R.L. Lin, Y.Q. Zhang, et al., Org. Chem. Front. 4 (2017) 1799-1805;
      (b) R.L. Lin, G.S. Fang, W.Q. Sun, J.X. Liu, Sci. Rep. 6 (2016);
      (c) R.L. Lin, Y.P. Dong, Y.F. Hu, et al., RSC Adv. 2 (2012) 7754-7758.

    21. [21]

      (a) Y.H. Ko, E. Kim, I. Hwang, K. Kim, Chem. Commun. (2007) 1305-1315;
      (b) Y. Liu, Y. Yu, J. Gao, Z. Wang, X. Zhang, Angew. Chem. Int. Ed. 49 (2010) 6576-6579;
      (c) F. Biedermann, O.A. Scherman, J. Phys. Chem. B 116 (2012) 2842-2849;
      (d) Z. Ji, J. Li, G. Chen, M. Jiang, ACS Macro Lett. 5 (2016) 588-592.

    22. [22]

      (a) F. Biedermann, V.D. Uzunova, O.A. Scherman, W.M. Nau, A.D. Simone, J. Am. Chem. Soc. 134 (2012) 15318-15323;
      (b) F. Biedermann, M. Vendruscolo, O.A. Scherman, A.D. Simone, W.M. Nau, J. Am. Chem. Soc. 135 (2013) 14879-14888.

  • 加载中
    1. [1]

      Hong-Yan LuJia-Rong LiDe-Li YangQi ZhangDa-Xin Shi . A novel synthesis of nitroform by the nitrolysis of cucurbituril. Chinese Chemical Letters, 2015, 26(3): 365-368. doi: 10.1016/j.cclet.2014.12.019

    2. [2]

      Long QinPeng-Fei DuanMing-Hua Liu . Interfacial assembly and host-guest interaction of anthracene-conjugated L-glutamate dendron with cyclodextrin at the air/water interface. Chinese Chemical Letters, 2014, 25(4): 487-490. doi: 10.1016/j.cclet.2013.12.019

    3. [3]

      Yi-Lin WuYong-Sheng YanJian-Ming PanXiao-Hui DaiWei-Dong ShiMin-Jia Meng . Fabrication and evaluation of molecularly imprinted regenerated cellulose composite membranes via atom transfer radical polymerization. Chinese Chemical Letters, 2014, 25(2): 273-278.

    4. [4]

      Qi Zhong Zhou Shi Yong Liu Shu Min Zhao Huang Jiang Jiang . Folded or nonfolded fluorophores incorporating naphthalene:Their fluorescent quenching driven by charge transfer or co-aggregation in the aqueous-organic binary solvent. Chinese Chemical Letters, 2010, 21(2): 221-224. doi: 10.1016/j.cclet.2009.10.019

    5. [5]

      Li-Hua WangZhi-Jun ZhangHeng-Yi ZhangHai-Lang WuYu Liu . A twin-axial[5]pseudorotaxane based on cucurbit[8]uril and a-cyclodextrin. Chinese Chemical Letters, 2013, 24(11): 949-952.

    6. [6]

      Yu LijiaYang QianfanTang Yalin . A comparative study of assembly and disassembly process of dimeric and monomeric cyanine dyes with DNA templates. Chinese Chemical Letters, 2019, 30(3): 694-697. doi: 10.1016/j.cclet.2018.10.011

    7. [7]

      Meng DanLiang HeleChen QingdeShen Xinghai . Preparation and characterization of a novel single crystal of Th(Ⅳ) with cucurbit[6]uril. Chinese Chemical Letters, 2018, 29(3): 447-450. doi: 10.1016/j.cclet.2017.09.030

    8. [8]

      . Bromination of N-phenyloxypropyl-N'-ethyl-4,4'-bipyridium in cucurbit[8]uril molecular reactor. Chinese Chemical Letters, 2017, 28(2): 463-466. doi: 10.1016/j.cclet.2016.10.004

    9. [9]

      Li PeiyuChen YongLiu Yu . Calixarene/pillararene-based supramolecular selective binding and molecular assembly. Chinese Chemical Letters, 2019, 30(6): 1190-1197. doi: 10.1016/j.cclet.2019.03.035

    10. [10]

      Li JingHu Yong-HuiGe Cong-WuGong He-GuiGao Xi-Ke . The role of halogen bonding in improving OFET performance of a naphthalenediimide derivative. Chinese Chemical Letters, 2018, 29(3): 423-428. doi: 10.1016/j.cclet.2017.06.008

    11. [11]

      Yang XiranLiu FengboZhao ZhiyongLiang FengZhang HaijunLiu Simin . Cucurbit[10]uril-based chemistry. Chinese Chemical Letters, 2018, 29(11): 1560-1566. doi: 10.1016/j.cclet.2018.01.032

    12. [12]

      Zhang LuZhang Ying-MingLiu GuoxingLiu Yu . Redox-responsive diphenylalanine aggregate mediated by cyclodextrin. Chinese Chemical Letters, 2019, 30(1): 120-122. doi: 10.1016/j.cclet.2018.04.028

    13. [13]

      Song ChunxiaXiao YuxinLi KunpengZhang XiaoyuLu Yingβ-Cyclodextrin polymer based fluorescence enhancement method for sensitive adenosine triphosphate detection. Chinese Chemical Letters, 2019, 30(6): 1249-1252. doi: 10.1016/j.cclet.2019.03.055

    14. [14]

      Kim Young-YoubBang YongbinLee DayoungKang MingyuSong Yoon-Kyu . Step-growth polymerization of traptavidin-DNA conjugates for plasmonic nanostructures. Chinese Chemical Letters, 2020, 31(5): 1137-1140. doi: 10.1016/j.cclet.2019.07.008

    15. [15]

      Zhang TingLiu YaohuaHu BowenZhang ChunhuaChen YongLiu Yu . A multi-color and white-light emissive cucurbituril/terpyridine/lanthanide supramolecular nanofiber. Chinese Chemical Letters, 2019, 30(5): 949-952. doi: 10.1016/j.cclet.2018.12.029

    16. [16]

      Huang Guo-BaoLiu Wei-ErValkonen ArtoYao HuanRissanen KariJiang Wei . Selective recognition of aromatic hydrocarbons by endo-functionalized molecular tubes via C/N-H… π interactions. Chinese Chemical Letters, 2018, 29(1): 91-94. doi: 10.1016/j.cclet.2017.07.005

    17. [17]

      Fei GaoJian-Bin ZhangChun-Ping LiTian-Rui HuoXiong-Hui Wei . Supramolecular binding of amines with functional magnesium tetraphenylporphyrin for CO2 capture. Chinese Chemical Letters, 2013, 24(3): 249-252.

    18. [18]

      Yong Qing HUANG Hui ZHANG Jian Gu CHEN Zan Bin WEI Jing Xing GAO . Assembly of Ag(Ⅰ) Polymers with Thioether-S Binding and Homochiral Helices. Chinese Chemical Letters, 2005, 16(5): 663-666.

    19. [19]

      Sha-Sha ZhaiYong ChenYu Liu . Selective binding of bile salts by β-cyclodextrin derivatives with appended quinolyl arms. Chinese Chemical Letters, 2013, 24(6): 442-446.

    20. [20]

      Xiao-Shi HuHong-Mei DengJian LiXue-Shun JiaChun-Ju Li . Selective binding of unsaturated aliphatic hydrocarbons by a pillar[5]arene. Chinese Chemical Letters, 2013, 24(8): 707-709.

Metrics
  • PDF Downloads(0)
  • Abstract views(3)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return