Hydrogen peroxide-generating nanomedicine for enhanced chemodynamic therapy
-
* Corresponding authors.
E-mail addresses: danwu@zjut.edu.cn (D. Wu), jinchang@tju.edu.cn (J. Chang), shengwang@tju.edu.cn (S. Wang).
Citation:
Peng Yu, Xiaodong Li, Guohui Cheng, Xu Zhang, Dan Wu, Jin Chang, Sheng Wang. Hydrogen peroxide-generating nanomedicine for enhanced chemodynamic therapy[J]. Chinese Chemical Letters,
;2021, 32(7): 2127-2138.
doi:
10.1016/j.cclet.2021.02.015
J.P. Fruehauf, F.L. Meyskens, Clin. Cancer Res. 13 (2007) 789-794.
doi: 10.1158/1078-0432.CCR-06-2082
J. Noh, B. Kwon, E. Han, et al., Nat. Commun. 6 (2015) 6907.
doi: 10.1038/ncomms7907
G. Huang, H. Chen, Y. Dong, et al., Theranostics 3 (2013) 116-126.
doi: 10.7150/thno.5411
B.W. Yang, Y. Chen, J.L. Shi, Chem. Rev. 119 (2019) 4881-4985.
doi: 10.1021/acs.chemrev.8b00626
G. Yu, T.Y. Cen, Z. He, et al., Angew. Chem. Int. Ed. 58 (2019) 8799-8803.
doi: 10.1002/anie.201903277
S. Wang, R. Tian, X. Zhang, et al., Adv. Mater 33 (2021) 2007488.
doi: 10.1002/adma.202007488
S. Wang, G. Yu, W. Yang, et al., Adv. Sci. 8 (2021) 2002927.
doi: 10.1002/advs.202002927
Z. He, Y. Dai, X. Li, et al., Small 15 (2019) 1804131.
doi: 10.1002/smll.201804131
H. Ranji-Burachaloo, P.A. Gurr, D.E. Dunstan, G.G. Qiao, ACS Nano 12 (2018) 11819-11837.
doi: 10.1021/acsnano.8b07635
C. Zhang, W.B. Bu, D.L. Ni, et al., Angew. Chem. Int. Ed. 55 (2016) 2101-2106.
doi: 10.1002/anie.201510031
L. Lin, S. Wang, H. Deng, et al., J. Am. Chem. Soc. 142 (2020) 15320-15330.
doi: 10.1021/jacs.0c05604
J. Fang, T. Seki, H. Maeda, Adv. Drug Delivery Rev. 61 (2009) 290-302.
doi: 10.1016/j.addr.2009.02.005
D. Trachootham, J. Alexandre, P. Huang, Nat. Rev. Drug Discovery 8 (2009) 579-591.
doi: 10.1038/nrd2803
Z.M. Tang, Y.Y. Liu, M.Y. He, W.B. Bu, Angew. Chem. Int. Ed. 58 (2019) 946-956.
doi: 10.1002/anie.201805664
T.T. Wang, H. Zhang, H.H. Liu, et al., Adv. Funct. Mater. 30 (2020) 1906128.
doi: 10.1002/adfm.201906128
L.S. Lin, J.B. Song, L. Song, et al., Angew. Chem. Int. Ed. 57 (2018) 4902-4906.
doi: 10.1002/anie.201712027
C. Wang, Y.B. Liu, T. Zhou, et al., Chin. Chem. Lett. 30 (2019) 2231-2235.
doi: 10.1016/j.cclet.2019.08.055
J. Qu, T. Che, L. Shi, et al., Chin. Chem. Lett. 30 (2019) 1198-1203.
doi: 10.1016/j.cclet.2019.01.021
X. Yang, X. Cheng, A.A. Elzatahry, et al., Chin. Chem. Lett. 30 (2019) 324-330.
doi: 10.1016/j.cclet.2018.06.026
Y.H. Wang, W. Yin, W.D. Ke, et al., Biomacromolecules 19 (2018) 1990-1998.
doi: 10.1021/acs.biomac.7b01777
Z.M. Tang, H.L. Zhang, Y.Y. Liu, et al., Adv. Mater 29 (2017) 1701683.
doi: 10.1002/adma.201701683
Q. Guo, D. Wang, G. Yang, J. Biomed. Nanotechnol. 15 (2019) 2090-2099.
doi: 10.1166/jbn.2019.2832
W.P. Li, C.H. Su, Y.C. Chang, et al., ACS Nano 10 (2016) 2017-2027.
doi: 10.1021/acsnano.5b06175
M.F. Huo, L.Y. Wang, Y. Chen, J.L. Shi, Nat. Commun. 8 (2017) 357.
doi: 10.1038/s41467-017-00424-8
J.J. Li, A. Dirisala, Z.S. Ge, et al., Angew. Chem. Int. Ed. 56 (2017) 14025-14030.
doi: 10.1002/anie.201706964
C. Fang, Z. Deng, G.D. Cao, et al., Adv. Funct. Mater. 30 (2020) 1910085.
doi: 10.1002/adfm.201910085
L.L. Feng, R. Xie, C.Q. Wang, et al., ACS Nano 12 (2018) 11000-11012.
doi: 10.1021/acsnano.8b05042
S. Gao, H. Lin, H. Zhang, et al., Adv. Sci. 6 (2019) 1801733.
doi: 10.1002/advs.201801733
Z.G. Ren, S.C. Sun, R.R. Sun, et al., Adv. Mater 32 (2020) 1906024.
doi: 10.1002/adma.201906024
J.J. Liu, M. Wu, Y.T. Pan, et al., Adv. Funct. Mater. 30 (2020) 1908865.
doi: 10.1002/adfm.201908865
Y.L. Dai, Z. Yang, S.Y. Cheng, et al., Adv. Mater 30 (2018) 1704877.
doi: 10.1002/adma.201704877
R.K. Kankala, C.G. Liu, A.Z. Chen, et al., ACS Biomater. Sci. Eng. 3 (2017) 2431-2442.
doi: 10.1021/acsbiomaterials.7b00569
K. Sun, Z.G. Gao, Y. Zhang, et al., J. Mater. Chem. B Mater. Biol. Med. 6 (2018) 5876-5887.
doi: 10.1039/C8TB01731J
S. Wang, G.C. Yu, Z.T. Wang, et al., Angew. Chem. Int. Ed. 58 (2019) 14758-14763.
doi: 10.1002/anie.201908997
S. Wang, Z. Wang, G. Yu, et al., Adv. Sci. 6 (2019) 1801986.
doi: 10.1002/advs.201801986
N.Q. Gong, X.W. Ma, X.X. Ye, et al., Nat. Nanotechnol. 14 (2019) 379-387.
doi: 10.1038/s41565-019-0373-6
X.Y. Xu, Z.S. Zeng, J. Chen, et al., Chem. Eng. J. 390 (2020) 124628.
doi: 10.1016/j.cej.2020.124628
M. Zhang, R.X. Song, Y.Y. Liu, et al., Chem 5 (2019) 2171-2182.
doi: 10.1016/j.chempr.2019.06.003
S.C. Zhang, C.Y. Cao, X.Y. Lv, et al., Chem. Sci. 11 (2020) 1926-1934.
doi: 10.1039/C9SC05506A
L.S. Lin, T. Huang, J.B. Song, et al., J. Am. Chem. Soc. 141 (2019) 9937-9945.
doi: 10.1021/jacs.9b03457
L.S. Lin, J.F. Wang, J.B. Song, et al., Theranostics 9 (2019) 7200-7209.
doi: 10.7150/thno.39831
J.X. Fan, M.Y. Peng, H. Wang, et al., Adv. Mater 31 (2019) 1808278.
doi: 10.1002/adma.201808278
W. Fan, N. Lu, P. Huang, et al., Angew. Chem. Int. Ed. 56 (2017) 1229-1233.
doi: 10.1002/anie.201610682
M. Wang, D.M. Wang, Q. Chen, et al., Small 15 (2019) 1903895.
doi: 10.1002/smll.201903895
J.J. Li, Y.F. Li, Y.H. Wang, et al., Nano Lett. 17 (2017) 6983-6990.
doi: 10.1021/acs.nanolett.7b03531
H. Wei, E.K. Wang, Chem. Soc. Rev. 42 (2013) 6060-6093.
doi: 10.1039/c3cs35486e
M. Comotti, C. Della Pina, R. Matarrese, M. Rossi, Angew. Chem. Int. Ed. 43 (2004) 5812-5815.
doi: 10.1002/anie.200460446
J.N. Li, W.Q. Liu, X.C. Wu, X.F. Gao, Biomaterials 48 (2015) 37-44.
doi: 10.1016/j.biomaterials.2015.01.012
D. Hu, L. Chen, Y. Qu, et al., Theranostics 8 (2018) 1558-1574.
doi: 10.7150/thno.22989
Y.J. Sang, F.F. Cao, W. Li, et al., J. Am. Chem. Soc. 142 (2020) 5177-5183.
doi: 10.1021/jacs.9b12873
S. Ghosh, Bioorg. Chem. 88 (2019) 102925.
doi: 10.1016/j.bioorg.2019.102925
A. Brozovic, A. Ambriovic-Ristov, M. Osmak, Crit. Rev. Toxicol. 40 (2010) 347-359.
doi: 10.3109/10408441003601836
H.J. Kim, J.H. Lee, S.J. Kim, et al., J. Neurosci. 30 (2010) 3933-3946.
doi: 10.1523/JNEUROSCI.6054-09.2010
M. Ushio-Fukai, Y. Nakamura, Cancer Lett. 266 (2008) 37-52.
doi: 10.1016/j.canlet.2008.02.044
S.T. Duggan, G.M. Keating, Drugs 71 (2011) 2531-2558.
doi: 10.2165/11207510-000000000-00000
D.D. Von Hoff, M.W. Layard, P. Basa, et al., Ann. Intern. Med. 91 (1979) 710-717.
doi: 10.7326/0003-4819-91-5-710
X. Zhang, S. Wang, G. Cheng, et al., Matter 4 (2021) 26-53.
doi: 10.1016/j.matt.2020.10.002
S.D. Kan, W.M. Cheung, Y.L. Zhou, W.S. Ho, Planta Med. 80 (2014) 70-76.
doi: 10.1055/s-0033-1360126
M. Gilleron, X. Marechal, D. Montaigne, et al., Biochem. Biophys. Res. Commun. 388 (2009) 727-731.
doi: 10.1016/j.bbrc.2009.08.085
W.P. Tsang, S.P.Y. Chau, S.K. Kong, et al., Life Sci. 73 (2003) 2047-2058.
doi: 10.1016/S0024-3205(03)00566-6
A.B. Pardee, Y.Z. Li, C.J. Li, Curr. Cancer Drug Targets 2 (2002) 227-242.
doi: 10.2174/1568009023333854
D.C. Ferraz da Costa, L. Pereira Rangel, M. Martins-Dinis, et al., Molecules 25 (2020) 893.
doi: 10.3390/molecules25040893
X. Ma, X. Huang, G. Huang, et al., Adv. Healthcare Mater 3 (2014) 1210-1216.
doi: 10.1002/adhm.201300590
E. Blanco, E.A. Bey, C. Khemtong, et al., Cancer Res. 70 (2010) 3896-3904.
doi: 10.1158/0008-5472.CAN-09-3995
T.C. Huang, Y.L. Chung, M.L. Wu, S.M. Chuang, J. Agric. Food Chem. 59 (2011) 5164-5171.
doi: 10.1021/jf200579h
W. Yoo, D. Yoo, E. Hong, et al., J. Control. Release 269 (2018) 235-244.
doi: 10.1016/j.jconrel.2017.11.023
H. Ka, H.J. Park, H.J. Jung, et al., Cancer Lett. 196 (2003) 143-152.
doi: 10.1016/S0304-3835(03)00238-6
C.C. Huang, W.T. Chia, M.F. Chung, et al., J. Am. Chem. Soc. 138 (2016) 5222-5225.
doi: 10.1021/jacs.6b01784
Q. Li, L.H. Sun, M.M. Hou, et al., ACS Appl. Mater. Interfaces 11 (2019) 417-429.
doi: 10.1021/acsami.8b19667
Y.N. Dai, J.Z. Su, K. Wu, et al., ACS Appl. Mater. Interfaces 11 (2019) 10540-10553.
doi: 10.1021/acsami.8b22748
J.M. Pawelek, K.B. Low, D. Bermudes, Lancet Oncol. 4 (2003) 548-556.
doi: 10.1016/S1470-2045(03)01194-X
W.B. Coley, Ann. Surg. 14 (1891) 199-220.
doi: 10.1097/00000658-189112000-00015
D.E. Cameron, C.J. Bashor, J.J. Collins, Nat. Rev. Microbiol. 12 (2014) 381-390.
doi: 10.1038/nrmicro3239
P.N.L. Vo, H.M. Lee, D. Na, J. Microbiol. Biotechnol. 29 (2019) 845-855.
doi: 10.4014/jmb.1904.04016
Zhongyu Wang , Lijun Wang , Huaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637
Xueying Shi , Xiaoxuan Zhou , Bing Xiao , Hongxia Xu , Wei Zhang , Hongjie Hu , Shiqun Shao , Zhuxian Zhou , Youqing Shen , Xiaodan Xu , Jianbin Tang . A β-lapachone-loaded iron-polyphenol nanocomplex enhances chemodynamic therapy through cascade amplification of ROS in tumor. Chinese Chemical Letters, 2025, 36(5): 110178-. doi: 10.1016/j.cclet.2024.110178
Weiqian Jin , Lin Liao , Tao Qin , Xiaoxuan Guan , Huyang Gao , Peng Liang , Ming Gao , Junyu Lu . Recent advances in nanomedicine therapy for bacterial pneumonia. Chinese Chemical Letters, 2025, 36(6): 110920-. doi: 10.1016/j.cclet.2025.110920
Zhuan Chen , Bo Yang , Jun Li , Kun Du , Jiangchen Fu , Xiao Wu , Jiazhen Cao , Mingyang Xing . Environmentally safe storage and sustained release of hydrogen peroxide utilizing commercial hydrogel. Chinese Chemical Letters, 2025, 36(6): 110320-. doi: 10.1016/j.cclet.2024.110320
Zhaomin Tang , Qian He , Jianren Zhou , Shuang Yan , Li Jiang , Yudong Wang , Chenxing Yao , Huangzhao Wei , Keda Yang , Jiajia Wang . Active-transporting of charge-reversal Cu(Ⅱ)-doped mesoporous silica nanoagents for antitumor chemo/chemodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109742-. doi: 10.1016/j.cclet.2024.109742
Yiqian Jiang , Zihan Yang , Xiuru Bi , Nan Yao , Peiqing Zhao , Xu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331
Qiuxia Tan , E Pang , Qin Wang , Yuanyu Tang , Pan Zhu , Shaojing Zhao , Jianing Yi , Shiguang Jin , Minhuan Lan . Manganese carbonate-based nanoplatform for starvation therapy cascaded chemodynamic therapy, enhanced phototherapy and immune activation. Chinese Chemical Letters, 2025, 36(10): 110770-. doi: 10.1016/j.cclet.2024.110770
Liangliang Jia , Ye Hong , Xinyu He , Ying Zhou , Liujiao Ren , Hongjun Du , Bin Zhao , Bin Qin , Zhe Yang , Di Gao . Fighting hypoxia to improve photodynamic therapy-driven immunotherapy: Alleviating, exploiting and disregarding. Chinese Chemical Letters, 2025, 36(2): 109957-. doi: 10.1016/j.cclet.2024.109957
Xiaoyi Meng , Xinyue Sun , Zhaogang Sun , Yue Cheng , Yong Wang , Jun Ye , Yin Xiao , Hongqian Chu . Supramolecular-orchestrated carrier-free chemodynamic synergists with augmented oxidative damage for potentiated cancer therapy. Chinese Chemical Letters, 2025, 36(5): 110765-. doi: 10.1016/j.cclet.2024.110765
Zekun Gao , Xiuli Zheng , Weimin Liu , Jie Sha , Shuaishuai Bian , Haohui Ren , Jiasheng Wu , Wenjun Zhang , Chun-Sing Lee , Pengfei Wang . GSH-activatable copper-elsinochrome off-on photosensitizer for combined specific NIR-Ⅱ two-photon photodynamic/chemodynamic therapy. Chinese Chemical Letters, 2025, 36(3): 109874-. doi: 10.1016/j.cclet.2024.109874
Ruimiao Chang , Xinying Qu , Yuting Ye , Ying Qu , Bingyang Chu , Zhiyong Qian . Current advances in nanomedicine-based therapies for acute kidney injury. Chinese Chemical Letters, 2025, 36(10): 110802-. doi: 10.1016/j.cclet.2024.110802
Xuyun Lu , Yanan Chang , Shasha Wang , Xiaoxuan Li , Jianchun Bao , Ying Liu . Hydrogen peroxide electrosynthesis via two-electron oxygen reduction: From pH effect to device engineering. Chinese Chemical Letters, 2025, 36(5): 110277-. doi: 10.1016/j.cclet.2024.110277
Yating Zheng , Yulan Huang , Jing Luo , Xuqi Peng , Xiran Gui , Gang Liu , Yang Zhang . Supercritical fluid technology: A game-changer for biomacromolecular nanomedicine preparation and biomedical application. Chinese Chemical Letters, 2024, 35(7): 109169-. doi: 10.1016/j.cclet.2023.109169
Qinyu Zhao , Yunchao Zhao , Songjing Zhong , Zhaoyang Yue , Zhuoheng Jiang , Shaobo Wang , Quanhong Hu , Shuncheng Yao , Kaikai Wen , Linlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644
Ke Gong , Jinghan Liao , Jiangtao Lin , Quan Wang , Zhihua Wu , Liting Wang , Jiali Zhang , Yi Dong , Yourong Duan , Jianhua Chen . Mitochondria-targeted nanoparticles overcome chemoresistance via downregulating BACH1/CD47 axis in ovarian carcinoma. Chinese Chemical Letters, 2024, 35(5): 108888-. doi: 10.1016/j.cclet.2023.108888
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
Mengfan Zhang , Lingyan Liu , Peng Wei , Wei Feng , Tao Yi . A proximity tagging strategy utilizing an activated aldehyde group as the active site. Chinese Chemical Letters, 2025, 36(4): 110127-. doi: 10.1016/j.cclet.2024.110127
Yusong Bi , Rongzhen Zhang , Kaikai Niu , Shengsheng Yu , Hui Liu , Lingbao Xing . Construction of a three-step sequential energy transfer system with selective enhancement of superoxide anion radicals for photocatalysis. Chinese Chemical Letters, 2025, 36(5): 110311-. doi: 10.1016/j.cclet.2024.110311
Zhi Li , Wenpei Li , Shaoping Jiang , Chuan Hu , Yuanyu Huang , Maxim Shevtsov , Huile Gao , Shaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150
Wenjuan Jin , Zelong Chen , Yi Wang , Jiaxuan Li , Jiahui Li , Yuxin Pei , Zhichao Pei . Nano metal-photosensitizer based on Aza-BODIPY-Cu complex for CDT-enhanced dual phototherapy. Chinese Chemical Letters, 2024, 35(7): 109328-. doi: 10.1016/j.cclet.2023.109328