Citation: Wenqian Liu, Yulin Xu, Xue Li, Yan Meng, Huiling Wang, Chunrong Liu, Changlin Liu, Li Wang. A DNA G-quadruplex converts SOD1 into fibrillar aggregates[J]. Chinese Chemical Letters, ;2021, 32(7): 2322-2326. doi: 10.1016/j.cclet.2021.01.045 shu

A DNA G-quadruplex converts SOD1 into fibrillar aggregates

    * Corresponding authors.
    E-mail addresses: liuchl@mail.ccnu.edu.cn(C. Liu), wl_928@mail.ccnu.edu.cn (L. Wang).
    1 These authors contributed equally to this work.
  • Received Date: 12 November 2020
    Revised Date: 4 January 2021
    Accepted Date: 26 January 2021
    Available Online: 28 January 2021

Figures(5)

  • Nucleic acids with G4 elements play a role in the formation of aggregates involved in intracellular phase transitions. Our previous studies suggest that different forms of DNA could act as an accelerating template in Cu/Zn superoxide dismutase (SOD1) aggregation. Here, we examined the regulation of formation and cytotoxicity of the SOD1 aggregates by single-stranded 12-mer deoxynucleotide oligomers (dN)12 (N = A, T, G, C; ssDNAs) under acidic conditions. The ssDNAs can be divided into two groups based on their roles in SOD1 binding, exposure of hydrophobic clusters in SOD1, accelerated formation, morphology and cytotoxicity of SOD1 aggregates. G-quadruplexes convert SOD1 into fibrillar aggregates as a template, a fact which was observed for the first time in the nucleic acid regulation of protein aggregation. Moreover, the fibrillar or fibril-like SOD1 species with a G-quadruplex provided by (dG)12 were less toxic than the amorphous species with (dN)12 (N = A, T). This study not only indicates that both morphology and cytotoxicity of protein aggregates can be regulated by the protein-bound DNAs, but also help us understand roles of nucleic aid G-quadruplexes in the formation of aggregates and membraneless organelles involved in intracellular phase transitions.
  • 加载中
    1. [1]

      M. Calamai, J.R. Kumita, J. Mifsud, et al., Biochem. 45 (2006) 12806-12815.  doi: 10.1021/bi0610653

    2. [2]

      J.D. Domizio, R. Zhang, L.J. Stagg, et al., J. Biol. Chem. 287 (2012) 736-747.  doi: 10.1074/jbc.M111.238477

    3. [3]

      C.L. Liu, Y. Zhang, Adv. Protein Chem. Struct. Biol. 84 (2011) 1-40.  doi: 10.1145/2037715.2037759

    4. [4]

      J.D. Domizio, S. Dorta-Estremera, M. Gagea, et al., Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 14550 ̵ 14555.  doi: 10.1073/pnas.1206923109

    5. [5]

      C.N. Wong, L.W. Xiong, M. Horiuchi, et al., EMBO J. 20 (2001) 377-386.  doi: 10.1093/emboj/20.3.377

    6. [6]

      B. Macedo, T.A. Millen, C.A.C.A. Braga, et al., Biochem. 51 (2012) 5402-5413.  doi: 10.1021/bi300440e

    7. [7]

      S.F. Banani, A.M. Rice, W.B. Peeples, et al., Cell 166 (2016) 651-663.  doi: 10.1016/j.cell.2016.06.010

    8. [8]

      A. Khong, T. Matheny, S. Jain, et al., Cell 68 (2017) 808-820.  doi: 10.1016/j.molcel.2017.10.015

    9. [9]

      P. Ivanov, E. O'Day, M.M. Emara, et al., Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 18201-18206.  doi: 10.1073/pnas.1407361111

    10. [10]

      Y. Zhang, C. Roland, C. Sagui, Neurosci. 9 (2018) 1104-1117.  doi: 10.1021/acschemneuro.7b00476

    11. [11]

      X. Li, J.Y. Shi, S. Qiu, et al., Prog. Chem. 30 (2018) 1475-1486.

    12. [12]

      X. Li, Y. Chen, J. Zhao, et al., Oxid. Med. Cell. Longev. 2019 (2019) 9706792.

    13. [13]

      B. J. Carter, P. Anklesaria, S. Choi, et al., Antioxid. Redox Sign. 11 (2009) 1569-1586.  doi: 10.1089/ars.2008.2414

    14. [14]

      A. E. Frakes, L. Ferraiuolo, A. M. Haidet-Phillips, et al., Neuron 81 (2014) 1009-1023.  doi: 10.1016/j.neuron.2014.01.013

    15. [15]

      X. Li, S. Qiu, J. Shi, et al., Nucleic Acids Res. 47 (2019) 5074-5085.  doi: 10.1093/nar/gkz256

    16. [16]

      C.K. Tsang, M. Chen, X. Cheng, et al., Mol. Cell 70 (2018) 502-515.  doi: 10.1016/j.molcel.2018.03.029

    17. [17]

      A.R. Reddi, V.C. Culotta, Cell 152 (2013) 224-235.  doi: 10.1016/j.cell.2012.11.046

    18. [18]

      W. Jiang, Y.C. Han, R.Y. Zhou, et al., Biochem. 46 (2007) 5911-5923.  doi: 10.1021/bi062234m

    19. [19]

      W. Jiang, B. Zhang, J. Yin, et al., Biopolymers 89 (2008) 1154-1169.  doi: 10.1002/bip.21067

    20. [20]

      J. Yin, S. Hu, W. Jiang, et al., PLoS One 5 (2010) e12328.  doi: 10.1371/journal.pone.0012328

    21. [21]

      J. Yin, R.Z. Chen, C.L. Liu, Front. Biosci. 14 (2009) 5084-5106.  doi: 10.2741/3588

    22. [22]

      Y. Yue, F. Huo, P. Yue, et al., Anal. Chem. 90 (2018) 7018-7024.  doi: 10.1021/acs.analchem.8b01406

    23. [23]

      D. S. Leeman, K, Hebestreit, T. Ruetz, et al., Science 359 (2018) 1277-1283.  doi: 10.1126/science.aag3048

    24. [24]

      G. Habicht, C. Haupt, R.P. Friedrich, et al., Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 19232-19237.  doi: 10.1073/pnas.0703793104

    25. [25]

      G.C.P. van Zundert, J.P.G.L.M. Rodrigues, M. Trellet, et al., J. Mol. Biol. 428 (2015) 720-725.  doi: 10.1016/j.jmb.2015.09.014

    26. [26]

      D. Zhao, X. Dong, N. Jiang, et al., Nucleic Acids Res. 42 (2014) 11612-11622.  doi: 10.1093/nar/gku833

    27. [27]

      S. Stefansson, D.L. Adams, C.M. Tang, et al., BioTechniques 52 (2012) 1-6.  doi: 10.1155/2012/371487

    28. [28]

      J. Choi, S. Kim, T. Tachikawa, et al., J. Am. Chem. Soc. 133 (2011) 16146-16153.  doi: 10.1021/ja2061984

    29. [29]

      A. Rajendran, S.I. Nakano, N. Sugimoto, Chem. Commun. 46 (2010) 1299-1301  doi: 10.1039/b922050j

    30. [30]

      S. Pramanik, S. Nagatoishi, N. Sugimoto, Chem. Commun. 48 (2012) 4815-4817.  doi: 10.1039/c2cc30622k

    31. [31]

      R. Jin, B.L. Gaffney, C. Wang, et al., Proc. Natl. Acad. Sci. U. S. A. 89 (1992) 8832-8836.  doi: 10.1073/pnas.89.18.8832

    32. [32]

      A. Rajendran, B.U. Nair. BBA-Gen, Subjects 1760 (2006) 1794-1801.  doi: 10.1016/j.bbagen.2006.08.011

    33. [33]

      C.M. Karch, M. Prudencio, D.D. Winkler, et al., Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 7774-7779.  doi: 10.1073/pnas.0902505106

    34. [34]

      M. Chattopadhyay, A. Durazo, S.H. Sohn, et al., Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 18663-18668.  doi: 10.1073/pnas.0807058105

    35. [35]

      Z.A.O. Durer, J.A. Cohlberg, P. Dinh, et al., PLoS One 4 (2009) e5004.  doi: 10.1371/journal.pone.0005004

    36. [36]

      J.S. Elam, A.B. Taylor, R. Strange, et al., Nat. Struct. Mol. Biol. 10 (2003) 461-467.  doi: 10.1038/nsb935

    37. [37]

      M. Bucciantini, E. Giannoni, F. Chiti, et al., Nature 416 (2002) 507-511.  doi: 10.1038/416507a

    38. [38]

      I. Choi, Y.I. Yang, H.D. Song, et al., Biochim. Biophys. Acta 1812 (2011) 41-48.  doi: 10.1016/j.bbadis.2010.09.003

    39. [39]

      S.J. Weisberg, R. Lyakhovetsky, A.C. Werdiger, et al., Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 15811-15816.  doi: 10.1073/pnas.1205829109

    40. [40]

      G.W. Collie, R. Promontorio, S.M. Hampel, et al., J. Am. Chem. Soc. 134 (2012) 2723-2731.  doi: 10.1021/ja2102423

  • 加载中
    1. [1]

      ZHANG YongHU Jia-WeiZHOU XiaCHEN Shi-MingMA Zhi-GangCHEN Xue-Mei . Synthesis, Crystal Structure and SOD Activity of Ni(Ⅱ) Complex with1, 1, 4, 7, 7-Pentakis (1H-benzimidazol-2-ylmethyl)-1, 4, 7-triazaheptane. Chinese Journal of Inorganic Chemistry, 2013, 29(11): 2491-2496. doi: 10.3969/j.issn.1001-4861.2013.00.348

    2. [2]

      An PanKang LongtianTang ZhenSu PeifengLuo Zhixun . Spectroscopic identification towards tunable mesoscale aggregates of zinc tetraphenylporphyrin for materials. Chinese Chemical Letters, 2018, 29(3): 361-365. doi: 10.1016/j.cclet.2017.11.009

    3. [3]

      Wei CAO Wei LIAN Yu Bai BAI Chun Yan LIU Hui Bo SHAO . The Aggregates in LB Films of Schiff base Aluminium (III) Complex. Chinese Chemical Letters, 2001, 12(3): 271-272.

    4. [4]

      Li ZhanWang TianyouZhu FangWang ZhaoLi Yiwen . Bioinspired fluorescent dihydroxyindoles oligomers. Chinese Chemical Letters, 2020, 31(3): 783-786. doi: 10.1016/j.cclet.2019.05.021

    5. [5]

      Jahan-Bakhsh RaoofSayed Reza HosseiniSeyedeh Zeinab Mousavi-Sani . Improved hydrogen evolution on glassy carbon electrode modified with novel Pt/cetyltrimethylammonium bromide nanoscale aggregates. Chinese Journal of Catalysis, 2015, 36(2): 216-220. doi: 10.1016/S1872-2067(14)60207-2

    6. [6]

      Gao QinXie WenshengZhao LingyunWang YuZhang WeiCai Qiang . Synthesis of hierarchical sieve-like mesoporous silica nanoparticle aggregates via centrifugal method for drug delivery system. Chinese Chemical Letters, 2018, 29(12): 1804-1810. doi: 10.1016/j.cclet.2018.09.006

    7. [7]

      Hu JieniXu YueZhang Yan . Amphiphilic random polycarbonate self-assemble into GSH/pH dual responsive micelle-like aggregates in water. Chinese Chemical Letters, 2019, 30(12): 2039-2042. doi: 10.1016/j.cclet.2019.05.017

    8. [8]

      Cheng Bin CUI Qing Chun ZHAO Bing CAI Xin Sheng YAO Hiroyouki OSADA . A New Polyphenolic Compound from Rubus aleaefolius and Its Inhibitory Activity on Mammalian Cell Cycle at G0/G1 Phase. Chinese Chemical Letters, 2002, 13(4): 327-330.

    9. [9]

      Ying Hui ZHANG Yang WU . Construction of J-and H-Aggregates of meso-Tetrakis (4-hydroxyphenyl) porphyrin Diacid (H4THPP2+). Chinese Chemical Letters, 2005, 16(2): 279-281.

    10. [10]

      Zhen Chang WEN Yun Bao JIANG . Direct Fluorescence Sensing of Metal Ions in Aqueous Solution Using Intramolecular Charge Transfer Emission from Aggregates of Pentaerythrityl Tetra(p-dimethylaminobenzoate). Chinese Chemical Letters, 2004, 15(5): 551-554.

    11. [11]

      Wang Shouzhi*Liu Renzhang . STUDIES ON CHEMILUMINESCENT REACTION OF Bi+O2(1g). Acta Physico-Chimica Sinica, 1988, 4(01): 74-76. doi: 10.3866/PKU.WHXB19880114

    12. [12]

      Hui Hui Li Gu Yuan . Investigation of formation of dimeric G-quadruplex of HIV-1 integrase inhibitor by nuclear magnetic resonance. Chinese Chemical Letters, 2008, 19(9): 1108-1110. doi: 10.1016/j.cclet.2008.06.010

    13. [13]

      Xiao Dong NIE Wen Ge XIE Gang LIN Mao Sen SONG Xin Fu PAN . STUDIES ON THE SYNTHESIS OF TRACHYLOBAGIBBERELLINANALOGUE(Ⅱ)SYNTHESIS OF DIMETHYLESTER OF 3-HYDROXY-△1,10-12, 16-CYCLOGIBBERELLIN 12. Chinese Chemical Letters, 1995, 6(9): 753-754.

    14. [14]

      Hong Bing LIU Cheng Bin CUI Bing CAI Qian Qun GU Dong Yun ZHANG Qing Chun ZHAO Hua Shi GUAN . Pterocarine, a New Diarylheptanoid from Pterocarya tonkinesis, its Cell Cycle Inhibition at G0/G1 Phase and Induction of Apoptosis in HCT-15 and K562 Cells. Chinese Chemical Letters, 2005, 16(2): 215-218.

    15. [15]

      Shi Jun DA Ying LI Chu Sheng HUANG Xiao Hong LI Yu Lin LI . Synthetic Studies on Diarylheptanoids——Syntheses of 1,7-Bis(4-Hydroxyphenyl)-1,4,6-Heptatriene-3-One and Acetogenin G. Chinese Chemical Letters, 1997, 8(4): 291-292.

    16. [16]

      Jian Jun Li Shu Hui Jin Xiao Mei Liang De Kai Yuan Dao Quan Wang . Synthesis of 12-alkoxycarbonylmethylene-1, 15-pentadecanolides. Chinese Chemical Letters, 2007, 18(8): 915-916. doi: 10.1016/j.cclet.2007.05.042

    17. [17]

      Jia Xing HUANG Xiao Mei LIANG Dao Quan WANG . A New Synthetic Route to 12-Oxo-1, 15-pentadecanlactam. Chinese Chemical Letters, 2004, 15(2): 169-170.

    18. [18]

      Ji Liang SHI Yuan Chao ZHANG Li Jun XIA Xi Kui JIANG . DO FLAT MOLECULES WITHOUT A SIDE-CHAIN READILY FORM AGGREGATES ? A FLUORESCENCE STUDY OF PYRENE EXCIMER AND EXCIPLEX FORMATION IN ETOH-H2O AND MEOH-H2O SOLVENT SYSTEMS. Chinese Chemical Letters, 1990, 1(2): 149-152.

    19. [19]

      LIU Hong-leiLIU FanXUE DaLI Fu-xiang . Synthesis and characterization of encapsulated Pt/SOD zeolites. Journal of Fuel Chemistry and Technology, 2016, 44(02): 244-250.

Metrics
  • PDF Downloads(0)
  • Abstract views(6)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return