Citation: Qing-Wen Gui, Fan Teng, Zhou-Chao Li, Zhi-Yuan Xiong, Xue-Feng Jin, Ying-Wu Lin, Zhong Cao, Wei-Min He. Visible-light-initiated tandem synthesis of difluoromethylated oxindoles in 2-MeTHF under additive-, metal catalyst-, external photosensitizer-free and mild conditions[J]. Chinese Chemical Letters, ;2021, 32(6): 1907-1910. doi: 10.1016/j.cclet.2021.01.021 shu

Visible-light-initiated tandem synthesis of difluoromethylated oxindoles in 2-MeTHF under additive-, metal catalyst-, external photosensitizer-free and mild conditions

    * Corresponding author.
    E-mail address: weiminhe2016@yeah.net (W.-M. He).
  • Received Date: 25 November 2020
    Revised Date: 12 January 2021
    Accepted Date: 12 January 2021
    Available Online: 15 January 2021

Figures(6)

  • An efficient and eco-friendly protocol for synthesizing difluoromethylated oxindoles through a visible-light induced one-pot tandem reaction of N-arylacrylamides, difluoroacetic acid and PhI(OAc)2 was developed. This reaction proceeded in the absence of any additive, base, metal-catalyst and external photosensitizer, using cheap and easily available CHF2CO2H as the difluoromethylation reagent and bulk biomass-derived 2-MeTHF as the sole solvent. 26 Examples of N-arylacrylamide substrates were investigated, and all of them successfully underwent difluoromethylation to deliver the target products in good to excellent yields.
  • 加载中
    1. [1]

      (a) Z. Cao, Q. Zhu, Y.W. Lin, W.M. He, Chin. Chem. Lett. 30 (2019) 2132-2138;
      (b) Y. Kim, C.J. Li, Green Synth. Catal. 1 (2020) 1-11.

    2. [2]

      (a) C.J. Clarke, W.C. Tu, O. Levers, A. Bröhl, J.P. Hallett, Chem. Rev. 118 (2018) 747-800;
      (b) M. Li, F. Wu, Y. Gu, Chin. J. Catal. 40 (2019) 1135-1140;
      (c) L.H. Lu, Z. Wang, W. Xia, et al., Chin. Chem. Lett. 30 (2019) 1237-1240;
      (d) S. Peng, Y.X. Song, J.Y. He, et al., Chin. Chem. Lett. 30 (2019) 2287-2290;
      (e) Q. Sun, L. Liu, Y. Yang, Z. Zha, Z. Wang, Chin. Chem. Lett. 30 (2019) 1379-1382;
      (f) F. Gao, R. Bai, F. Ferlin, et al., Green Chem. 22 (2020) 6240-6257;
      (g) F.H. Qin, X.J. Huang, Y. Liu, et al., Chin. Chem. Lett. 31 (2020) 3267-3270.

    3. [3]

      (a) Q. Zhen, L. Chen, L. Qi, et al., Chem. Asian J. 15 (2020) 106-111;
      (b) W.H. Bao, Z. Wang, X. Tang, et al., Chin. Chem. Lett. 30 (2019) 2259-2262;
      (c) Y. Wang, J. Shen, Q. Chen, L. Wang, M. He, Chin. Chem. Lett. 30 (2019) 409-412.

    4. [4]

      (a) F. Wang, T.Q. Wei, P. Xu, S.Y. Wang, S.J. Ji, Chin. Chem. Lett. 30 (2019) 379-382;
      (b) Y. Zhang, K. Sun, Q. Lv, et al., Chin. Chem. Lett. 30 (2019) 1361-1368;
      (c) J. Chen, L. Wu, J. Wu, Chin. Chem. Lett. 31 (2020) 2993-2995;
      (d) F.S. He, Y. Yao, W. Xie, J. Wu, Chem. Commun. 56 (2020) 9469-9472;
      (e) Q.W. Gui, F. Teng, S.N. Ying, et al., Chin. Chem. Lett. 31 (2020) 3241-3244.

    5. [5]

      (a) X. Mi, Y. Kong, J. Zhang, C. Pi, X. Cui, Chin. Chem. Lett. 30 (2019) 2295-2298;
      (b) D.Q. Dong, L.X. Li, G.H. Li, et al., Chin. J. Catal. 40 (2019) 1494-1498;
      (c) M. Fu, X. Ji, Y. Li, G.J. Deng, H. Huang, Green Chem. 22 (2020) 5594-5598;
      (d) L. Lu, Y. Li, X. Jiang, Green Chem. 22 (2020) 5989-5994;
      (e) F.S. He, S. Xie, Y. Yao, J. Wu, Chin. Chem. Lett. 31 (2020) 3065-3072;
      (f) L. Zou, L. Wang, L. Sun, X. Xie, P. Li, Chem. Commun. 56 (2020) 7933-7936;
      (g) S. He, X. Chen, F. Zeng, et al., Chin. Chem. Lett. 31 (2020) 1863-1867;
      (h) W. Xiao, J. Wu, Chin. Chem. Lett. 31 (2020) 3083-3094;
      (i) P. Wang, Q. Zhao, W. Xiao, J. Chen, Green Synth. Catal. 1 (2020) 42-51.

    6. [6]

      (a) Y. Liu, X.L. Chen, K. Sun, et al., Org. Lett. 21 (2019) 4019-4024;
      (b) Q. Liu, L. Wang, H. Yue, et al., Green Chem. 21 (2019) 1609-1613;
      (c) J. Shi, W. Wei, Chin. J. Org. Chem. 40 (2020) 2170-2172;
      (d) Z. Gan, G. Li, X. Yang, et al., Sci. China Chem. 63 (2020) 1652;
      (e) L.Y. Xie, Y.S. Bai, X.Q. Xu, et al., Green Chem. 22 (2020) 1720-1725;
      (f) J. Xu, H. Zhang, J. Zhao, et al., Org. Chem. Front. 7 (2020) 4031-4042;
      (g) W.B. He, L.Q. Gao, X.J. Chen, et al., Chin. Chem. Lett. 31 (2020) 1895-1898.

    7. [7]

      (a) J. Bergman, Oxindoles, in: E.F.V. Scriven, C.A. Ramsden (Eds.), Advances in Heterocyclic Chemistry, Vol. 117, Academic Press, 2015, pp. 1-81;
      (b) N. Ye, H. Chen, E.A. Wold, P.Y. Shi, J. Zhou, ACS Infect. Dis. 2 (2016) 382-392;
      (c) M.Z. Zhang, L. Liu, Q. Gou, et al., Green Chem. 22 (2020) 8369-8374;
      (d) Y. An, Y. Li, J. Wu, Org. Chem. Front. 3 (2016) 570-573;
      (e) C. Wang, Q. Chen, Q. Guo, et al., J. Org. Chem. 81 (2016) 5782-5788;
      (f) K. Zhou, J. Chen, J. Wu, Chin. Chem. Lett. 31 (2020) 2996-2998.

    8. [8]

      (a) Z.Z. Han, C.P. Zhang, Adv. Synth. Catal. 362 (2020) 4256-4292;
      (b) A. Lemos, C. Lemaire, A. Luxen, Adv. Synth. Catal. 361 (2019) 1500-1537;
      (c) W. Sha, W. Zhang, S. Ni, et al., J. Org. Chem. 82 (2017) 9824-9831; (d) Y. Zhou, Z. Xiong, J. Qiu, L. Kong, G. Zhu, Org. Chem. Front. 6 (2019) 1022-1026;
      (e) C.F. Meyer, S.M. Hell, A. Misale, A.A. Trabanco, V. Gouverneur, Angew. Chem. Int. Ed. 58 (2019) 8829-8833;
      (f) R. Xu, C. Cai, Chem. Commun. 55 (2019) 4383-4386;
      (g) D. Zhang, Z. Fang, J. Cai, et al., Chem. Commun. 56 (2020) 8119-8122;
      (h) D.Q. Dong, H. Yang, J.L. Shi, et al., Org. Chem. Front. 7 (2020) 2538-2575.

    9. [9]

      (a) Y. Xiang, Y. Li, Y. Kuang, J. Wu, Chem. Eur. J. 23 (2017) 1032-1035;
      (b) J.Y. Wang, Y.M. Su, F. Yin, et al., Chem. Commun. 50 (2014) 4108-4111;
      (c) J.Y. Wang, X. Zhang, Y. Bao, et al., Org. Biomol. Chem. 12 (2014) 5582-5585.

    10. [10]

      J. Liu, S. Zhuang, Q. Gui, et al., Eur. J. Org. Chem. (2014) 3196-3202.

    11. [11]

      X.J. Tang, C.S. Thomoson, W.R. Dolbier, Org. Lett. 16(2014) 4594-4597.  doi: 10.1021/ol502163f

    12. [12]

      H. Sun, Y. Jiang, Y.S. Yang, et al., Org. Biomol. Chem. 17(2019) 6629-6638.  doi: 10.1039/C9OB01213C

    13. [13]

      P. Xiong, H.H. Xu, J. Song, H.C. Xu, J. Am. Chem. Soc. 140(2018) 2460-2464.  doi: 10.1021/jacs.8b00391

    14. [14]

      Z. Ruan, Z. Huang, Z. Xu, et al., Org. Lett. 21(2019) 1237-1240.  doi: 10.1021/acs.orglett.9b00361

    15. [15]

      (a) L.Y. Xie, S. Peng, T.G. Fan, et al., Sci. China Chem. 62 (2019) 460-464;
      (b) W.M. He, Y.W. Lin, D.H. Yu, Sci. China Chem. 63 (2020) 291-293;
      (c) L.Y. Xie, T.G. Fang, J.X. Tan, et al., Green Chem. 21 (2019) 3858-3863;
      (d) K.J. Liu, T.Y. Zeng, J.L. Zeng, et al., Chin. Chem. Lett. 30 (2019) 2304-2308;
      (e) K.J. Liu, J.H. Deng, T.Y. Zeng, et al., Chin. Chem. Lett. 31 (2020) 1868-1872;
      (f) Y. Wu, W. He, Chin. J. Org. Chem. 40 (2020) 2597-2599;
      (g) L.Y. Xie, Y.S. Liu, H.R. Ding, et al., Chin. J. Catal. 41 (2020) 1168-1173;
      (h) J.Y. Chen, C.T. Zhong, Q.W. Gui, et al., Chin. Chem. Lett. 32 (2021) 475-479;
      (i) W.T. Wei, Q. Li, M.Z. Zhang, W.M. He, Chin. J. Catal. 42 (2021) 731-742.

    16. [16]

      R. Sakamoto, H. Kashiwagi, K. Maruoka, Org. Lett. 19(2017) 5126-5129.  doi: 10.1021/acs.orglett.7b02416

    17. [17]

      (a) Y. Mei, L. Zhao, Q. Liu, et al., Green Chem. 22 (2020) 2270-2278;
      (b) D. Xia, Y. Li, T. Miao, P. Li, L. Wang, Green Chem. 19 (2017) 1732-1739.

  • 加载中
    1. [1]

      Ting ZhangBaojing HuangHong HuangAiling YanShiqiang LuXufang Qian . Visible light boosted Fenton-like reaction of carbon dot-Fe(Ⅲ) complex: Kinetics and mechanism insights. Chinese Chemical Letters, 2025, 36(11): 110885-. doi: 10.1016/j.cclet.2025.110885

    2. [2]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    3. [3]

      Liyang Qin Luna Wu Jinlin Long . Advancements in photocatalytic hydrogen peroxide synthesis: overcoming challenges for a sustainable future. Chinese Journal of Structural Chemistry, 2025, 44(4): 100545-100545. doi: 10.1016/j.cjsc.2025.100545

    4. [4]

      Jia-Cheng HouHong-Tao JiYu-Han LuJia-Sheng WangYao-Dan XuYan-Yan ZengWei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514

    5. [5]

      Liangbo ZhangJun ChengYahui ShiKunjie HouQi AnJingyi LiBaohui CuiFei Chen . Efficient removal of tetracycline hydrochloride by ZnO/HNTs composites under visible light: Kinetics, degradation pathways and mechanism. Chinese Chemical Letters, 2025, 36(7): 110400-. doi: 10.1016/j.cclet.2024.110400

    6. [6]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    7. [7]

      Min LiuDi WangZenghui YeDonghao JiangBencan TangYanqi WuFengzhi Zhang . Highly stereo- and enantio-selective synthesis of spiro cyclopropyl oxindoles via organic catalyst-mediated cyclopropanation. Chinese Chemical Letters, 2025, 36(10): 110923-. doi: 10.1016/j.cclet.2025.110923

    8. [8]

      Lei ShenYang ZhangLinlin ZhangChuanwang LiuZhixian MaKangjiang LiangChengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742

    9. [9]

      Xiang LiBeibei ZhangZhixiang WangXiangyu Chen . Organocatalyzed iodine-mediated reversible-deactivation radical polymerization via photoinduced charge transfer complex catalysis. Chinese Chemical Letters, 2025, 36(6): 110383-. doi: 10.1016/j.cclet.2024.110383

    10. [10]

      Min YanZihao YePing Lu . Catalyst-free, visible-light-induced [2π + 2σ] cycloaddition towards azabicyclohexanes. Chinese Chemical Letters, 2025, 36(6): 110540-. doi: 10.1016/j.cclet.2024.110540

    11. [11]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    12. [12]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 100024-0. doi: 10.3866/PKU.WHXB202404012

    13. [13]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    14. [14]

      Meixin WangYizhi ZhangShanshan LiuXiao Shen . Synthesis of rigidified cyclohexanes enabled by visible-light-induced trifluoroacetylsilane-mediated [2 + 2] cycloaddition of cyclopropenes. Chinese Chemical Letters, 2025, 36(8): 110758-. doi: 10.1016/j.cclet.2024.110758

    15. [15]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    16. [16]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    17. [17]

      Xin Wang Changzhao Chen Qishen Wang Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473

    18. [18]

      Pei XuTian-Zi HaoZhi-Tao LiuYi-Qin LiuHui-Xian JiangDong GuoXu Zhu . Visible-light-induced dual catalysis for divergent reduction of nitro compounds with CO2 radical anion. Chinese Chemical Letters, 2025, 36(10): 110899-. doi: 10.1016/j.cclet.2025.110899

    19. [19]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    20. [20]

      Yunchao Li Shanying Chen Ke Qi Kangning Huo Shuxin Li Jingyi Li Ying Wei Louzhen Fan . A New Colloid Electrophoresis Experiment Incorporating Characteristics of Inquiry Learning and Ideological and Political Education. University Chemistry, 2024, 39(2): 47-51. doi: 10.3866/PKU.DXHX202308063

Metrics
  • PDF Downloads(10)
  • Abstract views(1504)
  • HTML views(136)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return