Citation: Wenmei Zhang, Zunsheng Han, Yingqi Liang, Qi Zhang, Xiangnan Dou, Guangsheng Guo, Xiayan Wang. A pico-HPLC-LIF system for the amplification-free determination of multiple miRNAs in cells[J]. Chinese Chemical Letters, ;2021, 32(7): 2183-2186. doi: 10.1016/j.cclet.2020.12.007 shu

A pico-HPLC-LIF system for the amplification-free determination of multiple miRNAs in cells

    * Corresponding author.
    E-mail address: xiayanwang@bjut.edu.cn (X. Wang).
  • Received Date: 9 October 2020
    Revised Date: 11 November 2020
    Accepted Date: 3 December 2020
    Available Online: 11 December 2020

Figures(4)

  • MicroRNAs are a class of important biomarkers, and the simultaneous detection of multiple miRNAs can provide valuable information about many diseases and biological processes. Amplification-free determination has been developed for the analysis of multiple miRNAs because of its characteristic low cost and high fidelity. Herein, a method for the amplification-free analysis and simultaneous detection of multiple miRNAs based on a so-called pico-HPLC-LIF system is described. In this process, a bare open capillary with an inner diameter of 680 nm is used as a separation column for a sample volume of several hundreds of femtoliters (300 fL), followed by separation and detection. The technique has a zeptomolar limit of detection. The method was applied to detect cellular miRNA from adenocarcinomic human alveolar basal epithelial (A549) cell extracts, and the simultaneous detection of the mir-182, miR-155, and let-7a was achieved. The results showed that the expression of mir-182 and miR-155 was up-regulated and that of let-7a was down-regulated in A549 cells. This method for multiple miRNAs detection is expected to have broad applications in miRNA-based disease diagnosis, prognosis, treatment, and monitoring.
  • 加载中
    1. [1]

      L. He, G.J. Hannon, Nat. Rev. Genet. 5(2004) 522-531.  doi: 10.1038/nrg1379

    2. [2]

      H. Dong, J. Lei, L. Ding, et al., Chem. Rev. 113(2013) 6207-6233.

    3. [3]

      N. Kosaka, H. Iguchi, T. Ochiya, Cancer Sci. 101(2010) 2087-2092.  doi: 10.1111/j.1349-7006.2010.01650.x

    4. [4]

      B.P. Wijnhoven, M.Z. Michael, D.I. Watson, Br. J. Surg. 94(2007) 23-30.  doi: 10.1002/bjs.5673

    5. [5]

      J. Ooi, B. Bernardo, S. Singla, et al., RNA Biol. 14(2017) 500-513.  doi: 10.1080/15476286.2016.1181251

    6. [6]

      J.N.J. Buie, A.J. Goodwin, J.A. Cook, P.V. Halushka, H.K. Fan, Atherosclerosis 254(2016) 271-281.  doi: 10.1016/j.atherosclerosis.2016.09.067

    7. [7]

      S. Ikeda, S.W. Kong, J. Lu, et al., Physiol. Genomics 31(2007) 367-373.  doi: 10.1152/physiolgenomics.00144.2007

    8. [8]

      D.S. Greenberg, H. Soreq, Curr. Pharm. Design 20(2014) 6022-6027.  doi: 10.2174/1381612820666140314151924

    9. [9]

      O.C. Maes, H.M. Chertkow, E. Wang, H.M. Schipper, Curr. Genomics 10(2009) 154-168.  doi: 10.2174/138920209788185252

    10. [10]

      R. Fiore, G. Siegel, G. Schratt, BBA-Gene Regul. Mech. 1779(2008) 471-478.

    11. [11]

      D. Sekar, B.R. Shilpa, A.J. Das, Curr. Hypertens. Rep. 19(2017) 57.  doi: 10.1007/s11906-017-0752-z

    12. [12]

      Y. Wei, A. Schober, Cell. Mol. Life Sci. 73(2016) 3473-3495.

    13. [13]

      M.E. Dumas, C. Emanueli, Diabetes 66(2017) 565-567.  doi: 10.2337/dbi16-0072

    14. [14]

      R.M. Graybill, R.C. Bailey, Anal. Chem. 88(2016) 431-450.  doi: 10.1021/acs.analchem.5b04679

    15. [15]

      K.A. Cissell, S. Shrestha, S.K. Deo, Anal. Chem. 79(2007) 4754-4761.  doi: 10.1021/ac0719305

    16. [16]

      S. Sharbati-Tehrani, B. Kutz-Lohroff, R. Bergbauer, J. Scholven, R. Einspanier, BMC Mol. Biol. 9(2008) 34.  doi: 10.1186/1471-2199-9-34

    17. [17]

      W. Li, K. Ruan, Anal. Bioanal. Chem. 394(2009) 1117-1124.  doi: 10.1007/s00216-008-2570-2

    18. [18]

      Z. Wang, M. Gerstein, M. Snyde, Nat. Rev. Genet. 10(2009) 57-63.  doi: 10.1038/nrg2484

    19. [19]

      J. Na, G.W. Shin, H.G. Son, S.J.V. Lee, G.Y. Jung, Sci. Rep. 7(2017) 1-8.  doi: 10.1038/s41598-016-0028-x

    20. [20]

      P. Androvic, L. Valihrach, J. Elling, R. Sjoback, M. Kubista, Nucleic Acids Res. 45(2017) e144.  doi: 10.1093/nar/gkx588

    21. [21]

      S.C. Chapin, P.S. Doyle, Anal. Chem. 83(2011) 7179-7185.  doi: 10.1021/ac201618k

    22. [22]

      G.A. Metcalf, A. Shibakawa, H. Patel, et al., Anal. Chem. 88(2016) 8091-8098.  doi: 10.1021/acs.analchem.6b01594

    23. [23]

      F.J. Bian, L.Y. Sun, L.J. Cai, et al., Biosens. Bioelectron. 133(2019) 199-204.  doi: 10.1016/j.bios.2019.02.066

    24. [24]

      W. Zhang, L. Liu, Q. Zhang, et al., Chem. Commun. 56(2020) 2423-2426.  doi: 10.1039/C9CC09594B

    25. [25]

      R. Jiang, Y. Chang, S. Chen, et al., J. Chromatogr. A 1218(2011) 2604-2610.  doi: 10.1016/j.chroma.2011.02.061

    26. [26]

      D. Wegman, S. Krylov, Angew. Chem. Int. Ed. 50(2011) 10335-10339.  doi: 10.1002/anie.201104693

    27. [27]

      D. Wegman, F. Ghasemi, A. Stasheuski, et al., Anal. Chem. 88(2016) 2472-2477.  doi: 10.1021/acs.analchem.5b04682

    28. [28]

      W. Wang, X.Y. Cai, P. Lin, R.G. Bai, J. Sep. Sci. 41(2018) 3925-3931.  doi: 10.1002/jssc.201800635

    29. [29]

      R. Ishibashi, K. Mawatari, T. Kitamori, Small 8(2012) 1237-1242.  doi: 10.1002/smll.201102420

    30. [30]

      R. Li, Y. Shao, Y. Yu, X. Wang, G. Guo, Chem. Commun. 53(2017) 4104-4107.  doi: 10.1039/C7CC00799J

    31. [31]

      L. Liu, V. Veerappan, Q. Pu, et al., Anal. Chem. 86(2014) 729-736.  doi: 10.1021/ac403190a

    32. [32]

      X. Wang, L. Liu, G. Guo, et al., TrAC Trends Anal. Chem. 35(2012) 122-134.  doi: 10.1016/j.trac.2012.01.005

    33. [33]

      S. Howorka, Z. Siwy, Chem. Soc. Rev. 38(2009) 2360-2384.  doi: 10.1039/b813796j

    34. [34]

      L. Lin, K. Mawatari, K. Morikawa, et al., Analyst 142(2017) 1689-1696.  doi: 10.1039/C7AN00220C

    35. [35]

      B.J. Dodgson, A. Mazouchi, D.W. Wegman, C.C. Gradinaru, S.N. Krylov, Anal. Chem. 84(2012) 5470-5474.  doi: 10.1021/ac301546p

    36. [36]

      F.L. Ning, F. Wang, M.L. Li, et al., Diagn. Pathol. 9(2014) 143.  doi: 10.1186/1746-1596-9-143

    37. [37]

      F. Liu, D.L. Song, Y.H. Wu, et al., Thorac. Cancer 8(2017) 613-619.  doi: 10.1111/1759-7714.12492

    38. [38]

      H.C. Jeong, E.K. Kim, J.H. Lee, et al., Mol. Med. Rep. 4(2011) 383-387.

  • 加载中
    1. [1]

      Yu Yun Chen Wei Ping Yang Zhu Jun Zhang . Determination of metoprolol in rabbit blood using capillary electrophoresis with laser-induced fluorescence detection. Chinese Chemical Letters, 2011, 22(3): 350-353. doi: 10.1016/j.cclet.2010.10.025

    2. [2]

      Zhuo LiYang ZhangFang-Hong TongTing-Ting JiangHui-Ping ZhengJian-Nong YeQing-Cui Chu . Capillary electrophoresis with laser-induced fluorescence detection of main polyamines and precursor amino acids in saliva. Chinese Chemical Letters, 2014, 25(4): 640-644. doi: 10.1016/j.cclet.2014.01.037

    3. [3]

      Feng Shen Meng Yang Yong Yu Qi Kang . Simultaneous laser-induced fluorescence and contactless-conductivity detection for microfluidic chip. Chinese Chemical Letters, 2008, 19(11): 1333-1336. doi: 10.1016/j.cclet.2008.06.057

    4. [4]

      Hua ZHANG Wen Rui JIN . Determination of Amino Acids in an Individual Erythrocyteby Capillary Electrophoresis with Intracellular FITC-derivatization and Laser-induced Fluorescence Detection. Chinese Chemical Letters, 2003, 14(9): 952-954.

    5. [5]

      Hua ZHANG Hai Ming WEI Wen Rui JIN . Capillary Electrophoretic Immunoassay with Laser-induced Fluorescence Detection for Interferon-gamma. Chinese Chemical Letters, 2004, 15(1): 121-122.

    6. [6]

      Jian Qiu MI Xiao Hua QI Xin Xiang ZHANG Wen Bao CHANG . Production of Polyclonal Antibody of Morphine and Determination of Morphine in Urine by Capillary Electrophoresis Immunoassay with Laser-induced Fluorescence Detection. Chinese Chemical Letters, 2004, 15(8): 943-946.

    7. [7]

      Li ShuleLu KedingMa XuefeiYang XinpingChen ShiyiZhang Yuanhang . Field measurement of the organic peroxy radicals by the low-pressure reactor plus laser-induced fluorescence spectroscopy. Chinese Chemical Letters, 2020, 31(10): 2799-2802. doi: 10.1016/j.cclet.2020.07.051

    8. [8]

      TANG Qing-LongGENG ChaoLI Ming-KunLIU Hai-FengYAO Ming-Fa . Laser-Induced Fluorescence Measurements of Formaldehyde and OH Radicals in Dual-Fuel Combustion Process in Engine. Acta Physico-Chimica Sinica, 2015, 31(12): 2269-2277. doi: 10.3866/PKU.WHXB201510082

    9. [9]

      Yu Yun CHEN Wei WANG Wei Ping YANG Zhu Jun ZHANG . Carboxymethyl-β-cyclodextrin for Chiral Separation of Amino Acids Derivatized with Fluorescene-5-isothiocyanate by Capillary Electrophoresis and Laser-induced Fluorescence Detection. Chinese Chemical Letters, 2004, 15(1): 112-114.

    10. [10]

      Ming Sheng MA Hui Wan HAN Guo Quan LIU . LASER INDUCED FLUORESCENCE DETECTOR(LIF) FOR CAPILLARY ELECTROPHORESIS. Chinese Chemical Letters, 1996, 7(1): 39-42.

    11. [11]

      HUANG LiliSHAO Xiang . CO Induced Single and Multiple Au Adatoms Trapped by Melem Self-Assembly. Acta Physico-Chimica Sinica, 2018, 34(12): 1390-1396. doi: 10.3866/PKU.WHXB201804191

    12. [12]

      Zhang YanZhang YiZhang YatingZhu LuqiHe PingangWang Qingjiang . Selective fluorescence labeling and sensitive determination of Staphylococcus aureus by microchip electrophoresis with a multiple-concentration approach. Chinese Chemical Letters, 2018, 29(9): 1383-1386. doi: 10.1016/j.cclet.2017.10.026

    13. [13]

      De Bin ZHU Da XING Xian LI Lan ZHANG . A Novel Real-time Fluorescence Mutant-allele-specific Amplification Method for Rapid Single Nucleotide Polymorphism Analysis. Chinese Chemical Letters, 2006, 17(4): 499-501.

    14. [14]

      De Xin WANG Gui Shen LU . MULTIPLE SYNTHESIS OF SMALLPEPTIDE ANALOGS. Chinese Chemical Letters, 1993, 4(5): 399-402.

    15. [15]

      Li WANG Hai Yang LI Ji Ling BAI Dong Xu DAI Ju Long SUN Ri Chang LU . Laser Induced Photoelectron Impact Ionization In Multiphoton Ionization Process. Chinese Chemical Letters, 1997, 8(11): 1007-1010.

    16. [16]

      Jin Mao YOU Xin Jun FAN Qing Yu OU . HPLC of Amino Acids and Oligopeptides by Pre-Column Fluorescence Derivatization with 9-Acridine Formyl Chloride. Chinese Chemical Letters, 1997, 8(10): 875-878.

    17. [17]

      Jin Mao YOU Xing Jun FAN Qing Yu OU Qing Cun ZHU . HPLC Determination of Amino Acids by Pre-Column Fluorescence Derivatization with Carbazole-9-yl-Acetyl Chloride. Chinese Chemical Letters, 1998, 9(3): 281-285.

    18. [18]

      Wu Min WANG Hui Qi HOU Qi Zong QIN . KINETICS OF LASER INDUCED PYROLYTIC DEPOSITION FROM Mn2(CO)10. Chinese Chemical Letters, 1992, 3(6): 471-472.

    19. [19]

      Ju Lin LIU Pei Hua MA Guan Cheng CHEN . PRODUCTION OF VINYL CHLORIDE IN THE INFRARED LASER INDUCED PHOTOSENSITIZED CHAIN REACTION OF 1, 2-DICHLOROETHANE. Chinese Chemical Letters, 1990, 1(1): 29-30.

    20. [20]

      Mou Xian-BoAli ZeeshanLi BoLi Tao-TaoYi HuanDong Hong-MingHe Nong-YueDeng YanZeng Xin . Multiple genotyping based on multiplex PCR and microarray. Chinese Chemical Letters, 2016, 27(11): 1661-1665. doi: 10.1016/j.cclet.2016.04.005

Metrics
  • PDF Downloads(0)
  • Abstract views(7)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return