-
[1]
N. Lior, Energy 33 (2008) 842-857.
doi: 10.1016/j.energy.2007.09.009
-
[2]
International Renewable Energy Agency, Perspectives for the Energy Transition: Investment Needs for a Low-Carbon Energy System, IRENA, 2017.
-
[3]
European Commission, Energy, Climate Change, Environment. Climate Action. EU Action. Climate Strategies & Targets. 2050 Long-term Strategy, https://ec.europa.eu/clima/policies/strategies/2050_en.
-
[4]
European Commission, Energy, Climate Change, Environment. Climate Action. EU Action. Climate Strategies & Targets. 2030 Climate & Energy Framework, https://ec.europa.eu/clima/policies/strategies/2030_en.
-
[5]
G.D. Scholes, G.R. Fleming, A. Olaya-Castro, R. van Grondelle, Nat. Chem. 3 (2011) 763-774.
doi: 10.1038/nchem.1145
-
[6]
N.S. Lewis, Science 315 (2007) 798-801.
doi: 10.1126/science.1137014
-
[7]
X. Huang, S. Han, W. Huang, X. Liu, Chem. Soc. Rev. 42 (2013) 173-201.
doi: 10.1039/C2CS35288E
-
[8]
O. Morton, Nature 443 (2006) 19-22.
doi: 10.1038/443019a
-
[9]
K. Ivaniuk, A. Pidluzhna, P. Stakhira, et al., Dyes Pigment. 175 (2020) 108123.
doi: 10.1016/j.dyepig.2019.108123
-
[10]
L. Ahmad, N. Khordehgah, J. Malinauskaite, H. Jouhara, Energy 207 (2020) 118254.
doi: 10.1016/j.energy.2020.118254
-
[11]
International Renewable Energy Agency, Renewable Power Generation Costs in 2017, https://www.irena.org/publications/2018/Jan/Renewable-powergeneration-costs-in-2017.
-
[12]
M. Tripathy, P.K. Sadhu, S.K. Panda, Renew. Sust. Energ. Rev. 61 (2016) 451-465.
doi: 10.1016/j.rser.2016.04.008
-
[13]
S. Guha, J. Yang, B. Yan, Amorphous and nanocrystalline silicon solar cells and modules, in: P. Bhattacharya, Comprehensive Semiconductor Science and Technology, Elsevier Science, 2011.
-
[14]
U. Pillai, Energy Econ. 50 (2015) 286-293.
doi: 10.1016/j.eneco.2015.05.015
-
[15]
G. Coletti, I. Gordon, M.C. Schubert, et al., Sol. Energy Mater. Sol. Cells 130 (2014) 629-633.
doi: 10.1016/j.solmat.2014.07.045
-
[16]
S. Andrew, Polycrystalline Vs Monocrystalline Solar Panels: Which Is the Best Type, and Why? https://www.solarreviews.com/blog/pros-and-cons-ofmonocrystalline-vs-polycrystalline-solar-panels.
-
[17]
R. Crandall, W. Luft, Prog. Photovoltaics: Res. Appl. 3 (1995) 315-332.
doi: 10.1002/pip.4670030506
-
[18]
Y. Wang, T. Sun, T. Paudel, et al., Nano Lett. 12 (2012) 440-445.
doi: 10.1021/nl203763k
-
[19]
A. Shah, P. Torres, R. Tscharner, N. Wyrsch, H. Keppner, Science 285 (1999) 692-698.
doi: 10.1126/science.285.5428.692
-
[20]
Dricus-Sinovoltaics, Amorphous Silicon Solar Cells: Structure and Applications, https://sinovoltaics.com/learning-center/solar-cells/amorphous-silicon-solar-cells-structure-and-applications/.
-
[21]
K. Zeng, Y. Chen, W. Zhu, H. Tian, Y. Xie, J. Am. Chem. Soc. 142 (2020) 5154-5161.
doi: 10.1021/jacs.9b12675
-
[22]
H. Song, Q. Liu, Y. Xie, Chem. Commun. 54 (2018) 1811-1824.
doi: 10.1039/C7CC09671B
-
[23]
Y. Kurumisawa, T. Higashino, S. Nimura, et al., J. Am. Chem. Soc. 141 (2019) 9910-9919.
doi: 10.1021/jacs.9b03302
-
[24]
Y. Tang, X. Liu, Y. Wang, et al., Chin. Chem. Lett. 31 (2020) 1927-1930.
doi: 10.1016/j.cclet.2019.12.038
-
[25]
B. O'regan, M. Grätzel, Nature 353 (1991) 737-740.
doi: 10.1038/353737a0
-
[26]
N. Huang, L. Chen, H. Huang, et al., Electrochim. Acta 180 (2015) 280-286.
doi: 10.1016/j.electacta.2015.08.113
-
[27]
A. Yella, H.W. Lee, H.N. Tsao, et al., Science 334 (2011) 629-634.
doi: 10.1126/science.1209688
-
[28]
J. Roh, H. Yu, J. Jang, ACS Appl. Mater. Interfaces 8 (2016) 19847-19852.
doi: 10.1021/acsami.6b04760
-
[29]
X. Wang, Y. Xie, B. Bateer, et al., Nano Res. 9 (2016) 2862-2874.
doi: 10.1007/s12274-016-1172-0
-
[30]
Y. Lu, H. Song, X. Li, et al., ACS Appl. Mater. Interfaces 11 (2019) 5046-5054.
doi: 10.1021/acsami.8b19077
-
[31]
M. Zhang, X. Zhan, Adv. Energy Mater. 9 (2019) 1900860.
doi: 10.1002/aenm.201900860
-
[32]
M. Mujahid, C. Chen, W. Hu, Z. Wang, Y. Duan, Sol. RRL (2020) 1900556.
-
[33]
K. Fukuda, K. Yu, T. Someya, Adv. Energy Mater. (2020) 2000765.
-
[34]
C.K. Lim, M. Maldonado, R. Zalesny, et al., Adv. Funct. Mater. 30 (2020) 1909375.
doi: 10.1002/adfm.201909375
-
[35]
M. Wang, Z. Zang, B. Yang, et al., Sol. Energy Mater. Sol. Cells 185 (2018) 117-123.
doi: 10.1016/j.solmat.2018.05.025
-
[36]
A. Zohar, M. Kulbak, I. Levine, et al., ACS Energy Lett. 4 (2018) 1-7.
-
[37]
J.Y. Kim, J.W. Lee, H.S. Jung, H. Shin, N.G. Park, Chem. Rev. 120 (2020) 7867-7918.
doi: 10.1021/acs.chemrev.0c00107
-
[38]
T. Zhu, Y. Yang, S. Zhou, et al., Chin. Chem. Lett. 31 (2020) 2249-2253.
doi: 10.1016/j.cclet.2020.02.004
-
[39]
B. Conings, L. Baeten, C. De Dobbelaere, et al., Adv. Mater. 26 (2014) 2041-2046.
doi: 10.1002/adma.201304803
-
[40]
J. Weickert, R.B. Dunbar, H.C. Hesse, W. Wiedemann, L. Schmidt-Mende, Adv. Mater. 23 (2011) 1810-1828.
doi: 10.1002/adma.201003991
-
[41]
T. Xu, Q. Qiao, Energy Environ. Sci. 4 (2011) 2700-2720.
doi: 10.1039/c0ee00632g
-
[42]
S.M. Ahn, E.D. Jung, S.H. Kim, et al., Nano Lett. 19 (2019) 3707-3715.
doi: 10.1021/acs.nanolett.9b00796
-
[43]
B.S. Richards, Sol. Energy Mater. Sol. Cells 90 (2006) 2329-2337.
doi: 10.1016/j.solmat.2006.03.035
-
[44]
D.P. Hagberg, J.H. Yum, H. Lee, et al., J. Am. Chem. Soc. 130 (2008) 6259-6266.
doi: 10.1021/ja800066y
-
[45]
A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 110 (2010) 6595-6663.
-
[46]
Z. Ning, Y. Fu, H. Tian, Energy Environ. Sci. 3 (2010) 1170-1181.
doi: 10.1039/c003841e
-
[47]
S.P. Hill, T. Dilbeck, E. Baduell, K. Hanson, ACS Energy Lett. 1 (2016) 3-8.
doi: 10.1021/acsenergylett.6b00001
-
[48]
N. Chander, A.F. Khan, V.K. Komarala, S. Chawla, V. Dutta, Prog. Photovolt: Res. Appl. 24 (2016) 692-703.
doi: 10.1002/pip.2723
-
[49]
K. Zeng, Z. Tong, L. Ma, et al., Energy Environ. Sci. 13 (2020) 1617-1657.
doi: 10.1039/C9EE04200H
-
[50]
T.F. Schulze, T.W. Schmidt, Energy Environ. Sci. 8 (2015) 103-125.
doi: 10.1039/C4EE02481H
-
[51]
B.E. Hardin, E.T. Hoke, P.B. Armstrong, et al., Nat. Photonics 3 (2009) 406-411.
doi: 10.1038/nphoton.2009.96
-
[52]
H. Yang, F. Peng, Q. Zhang, et al., Opt. Mater. 35 (2013) 2338-2342.
doi: 10.1016/j.optmat.2013.06.026
-
[53]
H. Tian, X. Yang, R. Chen, A. Hagfeldt, L. Sun, Energy Environ. Sci. 2 (2009) 674-677.
doi: 10.1039/b901238a
-
[54]
Y. Hao, X. Yang, J. Cong, et al., Chem. Commun. (2009) 4031-4033.
-
[55]
Y. Chiba, A. Islam, Y. Watanabe, et al., Jpn. J. Appl. Phys. 45 (2006) L638-L640.
doi: 10.1143/JJAP.45.L638
-
[56]
X. Xie, N. Gao, R. Deng, et al., J. Am. Chem. Soc. 135 (2013) 12608-12611.
doi: 10.1021/ja4075002
-
[57]
Y. Zhong, G. Tian, Z. Gu, et al., Adv. Mater. 26 (2014) 2831-2837.
doi: 10.1002/adma.201304903
-
[58]
M. Liu, Y. Lu, Z. Xie, G.M. Chow, Sol. Energy Mater. Sol. Cells 95 (2011) 800-803.
doi: 10.1016/j.solmat.2010.09.018
-
[59]
D. Li, H. Ågren, G. Chen, Dalton Trans. 47 (2018) 8526-8537.
doi: 10.1039/C7DT04461E
-
[60]
G. Chen, C. Yang, P.N. Prasad, Acc. Chem. Res. 46 (2013) 1474-1486.
doi: 10.1021/ar300270y
-
[61]
A. Monguzzi, R. Tubino, S. Hoseinkhani, M. Campione, F. Meinardi, Phys. Chem. Chem. Phys. 14 (2012) 4322-4332.
doi: 10.1039/c2cp23900k
-
[62]
S. Baluschev, T. Miteva, V. Yakutkin, et al., Phys. Rev. Lett. 97 (2006)143903.
doi: 10.1103/PhysRevLett.97.143903
-
[63]
S.P. Hill, K. Hanson, J. Am. Chem. Soc. 139 (2017) 10988-10991.
doi: 10.1021/jacs.7b05462
-
[64]
T. Dilbeck, K. Hanson, J. Phys. Chem. Lett. 9 (2018) 5810-5821.
doi: 10.1021/acs.jpclett.8b02635
-
[65]
C. Yuan, G. Chen, L. Li, et al., ACS Appl. Mater. Interfaces 6 (2014) 18018-18025.
doi: 10.1021/am504866g
-
[66]
L.T. Su, S.K. Karuturi, J. Luo, et al., Adv. Mater. 25 (2013) 1603-1607.
doi: 10.1002/adma.201204353
-
[67]
J. Zhang, H. Shen, W. Guo, et al., J. Power Sources 226 (2013) 47-53.
doi: 10.1016/j.jpowsour.2012.10.073
-
[68]
G. Chen, H. Ågren, T.Y. Ohulchanskyy, P.N. Prasad, Chem. Soc. Rev. 44 (2015) 1680-1713.
doi: 10.1039/C4CS00170B
-
[69]
G. Chen, Z. Ning, H. Ågren, Nanomaterials 6 (2016) 145.
doi: 10.3390/nano6080145
-
[70]
X. Wang, R.R. Valiev, T.Y. Ohulchanskyy, et al., Chem. Soc. Rev. 46 (2017) 4150-4167.
doi: 10.1039/C7CS00053G
-
[71]
Q. Guo, J. Wu, Y. Yang, et al., J. Power Sources 426 (2019) 178-187.
doi: 10.1016/j.jpowsour.2019.04.039
-
[72]
H. Li, M. Tan, X. Wang, et al., J. Am. Chem. Soc. 142 (2020) 2023-2030.
doi: 10.1021/jacs.9b11641
-
[73]
C. Yuan, G. Chen, P.N. Prasad, et al., J. Mater. Chem. 22 (2012) 16709-16713.
doi: 10.1039/c2jm16127c
-
[74]
S. Hao, Y. Shang, D. Li, et al., Nanoscale 9 (2017) 6711-6715.
doi: 10.1039/C7NR01008G
-
[75]
G. Chen, J. Damasco, H. Qiu, et al., Nano Lett. 15 (2015) 7400-7407.
doi: 10.1021/acs.nanolett.5b02830
-
[76]
D. Lu, C. Mao, S.K. Cho, S. Ahn, W. Park, Sci. Rep. 6 (2016) 18894.
doi: 10.1038/srep18894
-
[77]
J. Park, K. Kim, E. -J. Jo, et al., Nanoscale 11 (2019) 22813-22819.
doi: 10.1039/C9NR08432K
-
[78]
Y. Sun, X. An, L. Chen, et al., Mater. Res. Lett. 6 (2018) 314-320.
doi: 10.1080/21663831.2018.1447521
-
[79]
P. Qu, K. Wang, J. Li, S. Wang, W. Wei, Mater. Express 10 (2020) 556-562.
doi: 10.1166/mex.2020.1672
-
[80]
H. Zhang, X. Lv, R. Li, M. Zhang, M. Guo, Thin Solid Films 681 (2019) 103-113.
doi: 10.1016/j.tsf.2019.02.011
-
[81]
X. Mao, J. Yu, J. Xu, et al., Phys. Status Solidi A 216 (2019) 1900382.
doi: 10.1002/pssa.201900382
-
[82]
M. Ambapuram, R. Ramireddy, G. Maddala, et al., ACS Appl. Electron. Mater. 2 (2020) 962-970.
doi: 10.1021/acsaelm.0c00014
-
[83]
J. Liang, H. Gao, M. Yi, et al., Electrochim. Acta 261 (2018) 14-22.
doi: 10.1016/j.electacta.2017.12.112
-
[84]
H. Zhang, Q. Zhang, Y. Lv, et al., Mater. Res. Bull. 106 (2018) 346-352.
doi: 10.1016/j.materresbull.2018.06.014
-
[85]
H. Zhang, Y. Xiao, F. Qi, et al., ACS Sustain. Chem. Eng. 7 (2019) 8236-8244.
doi: 10.1021/acssuschemeng.8b06606
-
[86]
F. Qi, Y. Xiao, Z. Yu, et al., Org. Electron. 73 (2019) 152-158.
doi: 10.1016/j.orgel.2019.06.009
-
[87]
W. Bi, Y. Wu, C. Chen, et al., ACS Appl. Mater. Interfaces 12 (2020) 24737-24746.
doi: 10.1021/acsami.0c04258
-
[88]
J. Christiansen, J. Vester-Petersen, S. Roesgaard, et al., Sol. Energy Mater. Sol. Cells 208 (2020)110406.
doi: 10.1016/j.solmat.2020.110406
-
[89]
P. Balling, J. Christiansen, R.E. Christiansen, et al., Opt. Mater. 83 (2018) 279-289.
doi: 10.1016/j.optmat.2018.06.038
-
[90]
R. Zhao, Q. Wu, D. Tang, et al., J. Alloys Compd. 769 (2018) 92-95.
doi: 10.1016/j.jallcom.2018.07.225
-
[91]
H. Chen, S. -M. Lee, A. Montenegro, et al., ACS Photonics 5 (2018) 4289-4295.
doi: 10.1021/acsphotonics.8b01245
-
[92]
V. Kumar, A. Pandey, S.K. Swami, et al., J. Alloys Compd. 766 (2018) 429-435.
doi: 10.1016/j.jallcom.2018.07.012
-
[93]
K.K. Markose, R. Anjana, A. Antony, M.K. Jayaraj, J. Lumin. 204 (2018) 448-456.
doi: 10.1016/j.jlumin.2018.08.005
-
[94]
H. Wu, Z. Hao, L. Zhang, et al., CrystEngComm 22 (2020) 229-236.
doi: 10.1039/C9CE01386E
-
[95]
Y. Li, L. Zhao, M. Xiao, et al., Nanoscale 10 (2018) 22003-22011.
doi: 10.1039/C8NR07225F
-
[96]
J. Dutta, V.K. Rai, M.M. Durai, R. Thangavel, IEEE J. Photovolt. 9 (2019) 1040-1045.
doi: 10.1109/JPHOTOV.2019.2912719
-
[97]
H. Sun, Z. Guo, Y. Zhu, et al., Sol. Energy Mater. Sol. Cells 205 (2020) 110253.
doi: 10.1016/j.solmat.2019.110253
-
[98]
T. Chen, Y. Shang, S. Hao, et al., Electrochim. Acta 282 (2018) 743-749.
doi: 10.1016/j.electacta.2018.06.111
-
[99]
T. Chen, S. Hao, A. Azimbay, et al., J. Power Sources 430 (2019) 43-50.
doi: 10.1016/j.jpowsour.2019.05.006
-
[100]
H. Li, C. Chen, J. Jin, et al., Nano Energy 50 (2018) 699-709.
doi: 10.1016/j.nanoen.2018.06.024
-
[101]
M.S. Sebag, Z. Hu, K. de Oliveira Lima, et al., ACS Appl. Energy Mater. 1 (2018) 3537-3543.
doi: 10.1021/acsaem.8b00518
-
[102]
C. Wang, S. Zhao, F. Bian, et al., Commun. Theor. Phys. 72 (2020) 015501.
doi: 10.1088/1572-9494/ab5451
-
[103]
X. Deng, C. Zhang, J. Zheng, et al., Appl. Surf. Sci. 485 (2019) 332-341.
doi: 10.1016/j.apsusc.2019.04.226
-
[104]
Q. Liu, H. Liu, D. Li, et al., Nanoscale 11 (2019) 14070-14078.
doi: 10.1039/C9NR03105G
-
[105]
Y. Zhou, C. Ruchlin, A.J. Robb, K. Hanson, ACS Energy Lett. 4 (2019) 1458-1463.
doi: 10.1021/acsenergylett.9b00870
-
[106]
Y. Ji, W. Xu, N. Ding, et al., Light Sci. Appl. 9 (2020) 184.
doi: 10.1038/s41377-020-00418-0