Citation: Xinzhi Li, Xiangwei Ren, Hongli Wu, Wentao Zhao, Xiangyang Tang, Genping Huang. Mechanism and selectivity of copper-catalyzed borocyanation of 1-aryl-1,3-butadienes: A computational study[J]. Chinese Chemical Letters, ;2021, 32(1): 9-12. doi: 10.1016/j.cclet.2020.11.045 shu

Mechanism and selectivity of copper-catalyzed borocyanation of 1-aryl-1,3-butadienes: A computational study

    * Corresponding authors.
    E-mail addresses: txy@tju.edu.cn (X. Tang), gphuang@tju.edu.cn (G. Huang).
  • Received Date: 12 October 2020
    Revised Date: 19 November 2020
    Accepted Date: 19 November 2020
    Available Online: 1 December 2020

Figures(6)

  • Density functional theory calculations have been performed to investigate the copper-catalyzed borocyanation of 1-aryl-1,3-butadienes. The computations show that the regio- and enantioselectivity is determined by the borocupration step. The π-electron withdrawing aryl group at the C1 atom makes the C4 atom more electrophilic than the other carbon atoms, which together with the steric repulsion around the forming C—B bond, results in the experimentally observed exclusive 4,3-regioselectivity. The origins of the enantioselectivity were attributed to the steric effect and π-π stacking interaction between the butadiene moiety and the ligand.
  • 加载中
    1. [1]

      (a) C.T. Paul, M.G. Christopher, Med. Chem. Res. 1 (2010) 183-198;
      (b) A.K. Franz, S.O. Wilson, J. Med. Chem. 56 (2013) 388-405;
      (c) F. Qiu, W. Zhao, S. Han, et al., Polymers. 8 (2016) 191;
      (d) L.A.B. William, S.S. Brent, Chem. Rev. 116 (2016) 1375-1397;
      (e) D.B. Diaz, A.K. Yudin, Nat. Chem. 9 (2017) 731-742;
      (f) R. Ramesh, D.S. Reddy, J. Med. Chem. 61 (2018) 3779-3798.

    2. [2]

      (a) S. Akira, Angew. Chem. Int. Ed. 50 (2011) 6723-6737;
      (b) C.N. Emily, J.G. Stephen, A.I.M. Ibraheem, A.W. Stephen, B.M. Todd, Chem. Rev. 116 (2016) 9091-9161;
      (c) I. Adena, N.T. Kim, A.B. Suzanne, Acc. Chem. Res. 50 (2017) 2598-2609.

    3. [3]

      (a) D. Li, Z. Lin, T.B. Marder, Chem. Commun. (2009) 3987-3995;
      (b) I.A.I. Mkhalid, J.H. Barnard, T.B. Marder, J.M. Murphy, J.F. Hartwig, Chem. Rev. 110 (2010) 890-931;
      (c) L. Xu, Eur. J. Org. Chem. (2018) 3884-3890;
      (d) Z. He, Y. Hu, C. Xia, C. Liu, Org. Biomol. Chem. 17 (2019) 6099-6113;
      (e) M. Wang, Z. Shi, Chem. Rev. 120 (2020) 7348-7398.

    4. [4]

      (a) A. Whyte, A. Torelli, B. Mirabi, A. Zhang, M. Lautens, ACS Catal. 10 (2020) 11578-11622;
      (b) G.J.P. Perry, T. Jia, D.J. Procter, ACS Catal. 10 (2020) 1485-1499;
      (c) W. Xue, M. Oestreich, ACS Cent. Sci. 6 (2020) 1070-1081;
      (d) F.J.T. Talbot, Q. Dherbassy, S. Manna, et al., Angew. Chem. Int. Ed. 59 (2020) 2-14;
      (e) T.B. Hua, C. Xiao, Q.Q. Yang, J.R. Rong, Chin. Chem. Lett. 31 (2020) 311-323.

    5. [5]

      (a) W. Su, T.J. Gong, Q. Zhang, B. Xiao, Y. Fu, ACS Catal. 6 (2016) 6417-6421;
      (b) L. Wen, H. Zhang, J. Wang, F. Meng, Chem. Commun. 54 (2018) 12832-12835;
      (c) J.M. Zanghi, S. Liu, S.J. Meek, Org. Lett. 21 (2019) 5172-5177;
      (d) A. Whyte, A. Torelli, B. Mirabi, M. Lautens, Org. Lett. 21 (2019) 8373-8377;
      (e) D. Fiorito, Y. Liu, C. Besnard, C. Mazet, J. Am. Chem. Soc. 142 (2020) 623-632;
      (f) Z. Su, Y. Feng, R. Zou, et al., Chem. Commun. 56 (2020) 7483-7486;
      (g) X.C. Gan, CCS. Chem. 2 (2020) 203-208;
      (h) L. Jiang, P. Cao, M. Wang, et al., Angew. Chem. Int. Ed. 55 (2016) 13854-13858;
      (i) K. Yeung, F.J.T. Talbot, G.P. Howell, A.P. Pulis, D.J. Procter, ACS Catal. 9 (2019) 1655-1661.

    6. [6]

      (a) L. Dang, H. Zhao, Z. Lin, T.B. Marder, Organometallics 26 (2007) 2824-2832;
      (b) S. Lin, Z. Lin, Organometallics 38 (2019) 240-247;
      (c) Y. Yang, P. Liu, ACS Catal. 5 (2015) 2944-2951;
      (d) X. Lv, Y. Wu, G. Lu, Catal. Sci. Technol. 7 (2017) 5049-5054;
      (e) M. Isegawa, W.M.C. Sameera, A.K. Sharma, et al., ACS Catal. 7 (2017) 5370-5380;
      (f) J.H. Moon, H.Y. Jung, Y.J. Lee, et al., Organometallics 34 (2015) 2151-2159;
      (g) L. Dang, Z. Lin, T.B. Marder, Organometallics 27 (2008) 4443-4454;
      (h) L. Han, B. Xu, T. Liu, J. Organomet. Chem. 864 (2018) 154-159;
      (i) Q. Zhang, M. Li, J.Q. Liu, H.Z. Yu, J. Organometallics 871 (2018) 48-55;
      (j) X. Guo, T. Wang, Y. Zheng, J. Li, J. Organomet. Chem. 904 (2019) 121014;
      (k) Z. Li, L. Zhang, M. Nishiura, G. Luo, Z. Hou, ACS Catal. 10 (2020) 11685-11692.

    7. [7]

      T. Jia, M.J. Smith, A.P. Pulis, G.J.P. Perry, D.J. Procter, ACS Catal. 9 (2019) 6744-6750.

    8. [8]

      (a) X. Li, H. Wu, Z. Wu, G. Huang, J. Org. Chem. 84 (2019) 5514-5523;
      (b) G. Huang, P. Liu, ACS Catal. 6 (2016) 809-820;
      (c) M. Zhang, G. Huang, Dalton Trans. 45 (2016) 3552-3557;
      (d) L. Hu, Z. Wu, G. Huang, Org. Lett. 20 (2018) 5410-5413;
      (e) M. Zhang, L. Hu, Y. Cao, G. Huang, J. Org. Chem. 83 (2018) 2937-2947;
      (f) X. Li, H. Wu, G. Huang, Catal. Sci. Technol. 8 (2018) 2417-2426;
      (g) Y. Lang, M. Zhang, Y. Cao, G. Huang, Chem. Commun. 54 (2018) 2678-2681;
      (h) H. Wu, X. Li, X. Tang, G. Huang, Org. Chem. Front. 5 (2018) 3410-3420;
      (i) Z. Wu, M. Zhang, Y. Shi, G. Huang, Org. Chem. Front. 7 (2020) 1502-1511.

    9. [9]

      C. Li, R.Y. Liu, L.T. Jesikiewicz, Y. Yang, P. Liu, S.L. Buchwald, J. Am. Chem. Soc. 141 (2019) 5062-5070.

    10. [10]

      (a) F.M. Bickelhaupt, K.N. Houk, Angew. Chem. Int. Ed. 56 (2017) 10070-10086;
      (b) D.H. Ess, K.N. Houk, J. Am. Chem. Soc. 129 (2007) 10646-10647;
      (c) X. Hong, Y. Liang, K.N. Houk, J. Am. Chem. Soc. 136 (2014) 2017-2025;
      (e) S. Liu, Y. Lei, X. Qi, Y. Lan, J. Phys. Chem. A 118 (2014) 2638-2645;
      (f) G. Huang, M. Kalek, R.Z. Liao, F. Himo, Chem. Sci. 6 (2015) 1735-1746;
      (g) X. Zhang, H. Zou, G. Huang, ChemCatChem 8 (2016) 2549-2556;
      (h) J. Yu, S. Zhang, X. Hong, J. Am. Chem. Soc. 139 (2017) 7224-7243;
      (i) H. Wu, X. Li, X. Tang, C. Feng, G. Huang, J. Org. Chem. 83 (2018) 9220-9923;
      (j) Y. Luo, C. Shan, S. Liu, et al., ACS Catal. 9 (2019) 10876-10886.

    11. [11]

      (a) L. Xu, Q. Zhu, G. Huang, B. Cheng, Y. Xia, J. Org. Chem. 77 (2012) 3017-3024;
      (b) W. Guo, Y. Xia, J. Org. Chem. 80 (2015) 8113-8121;
      (c) W. Guo, T. Zhou, Y. Xia, Organometallics 34 (2015) 3012-3020;
      (d) L. Xu, X. Zhang, M.S. McCammant, et al., J. Org. Chem. 81 (2016) 7604-7611;
      (e) Y. Liu, Y. Tang, Y.Y. Jiang, et al., ACS Catal. 7 (2017) 1886-1896;
      (f) G. Lu, R.Y. Liu, Y. Yang, et al., J. Am. Chem. Soc. 139 (2017) 16548-16555;
      (g) X. Lv, F. Huang, Y.B. Wu, G. Lu, Catal. Sci. Technol. 8 (2018) 2835-2840;
      (h) X.W. Chen, L. Zhu, Y.Y. Gui, et al., J. Am. Chem. Soc. 141 (2019) 18825-18835;
      (i) Z.H. Yang, Q. Wang, S. Zhou, L.P. Xu, J. Org. Chem. 85 (2020) 6981-6991;
      (j) H. Zou, Z.L. Wang, Y. Cao, G. Huang, Chin. Chem. Lett. 29 (2018) 1355-1358.

  • 加载中
    1. [1]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    2. [2]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    3. [3]

      Yutong Xiong Ting Meng Wendi Luo Bin Tu Shuai Wang Qingdao Zeng . Molecular conformational effects on co-assembly systems of low-symmetric carboxylic acids investigated by scanning tunneling microscopy. Chinese Journal of Structural Chemistry, 2025, 44(2): 100511-100511. doi: 10.1016/j.cjsc.2025.100511

    4. [4]

      Junyi YuYin ChengAnhong CaiXianfeng HuangQingrui Zhang . Synthetic Cu(Ⅲ) from copper plating wastewater for onsite decomplexation of Cu(Ⅱ)- and Ni(Ⅱ)-organic complexes. Chinese Chemical Letters, 2025, 36(2): 110549-. doi: 10.1016/j.cclet.2024.110549

    5. [5]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    6. [6]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    7. [7]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    8. [8]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    9. [9]

      Zimo YangYan TongYongbo LiuQianlong LiuZhihao NiYuna HeYu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577

    10. [10]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    11. [11]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    12. [12]

      Shaojie DengPeihua MaQinghong BaiXin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878

    13. [13]

      Ming-Yi SunLu ZhangYa LiChong-Chen WangPeng WangXueying RenXiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035

    14. [14]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    15. [15]

      Ying WangHong YangCaixia ZhuQing HongXuwen CaoKaiyuan WangYuan XuYanfei ShenSongqin LiuYuanjian Zhang . Cascading oxidoreductases-like nanozymes for high selective and sensitive fluorescent detection of ascorbic acid. Chinese Chemical Letters, 2025, 36(4): 110153-. doi: 10.1016/j.cclet.2024.110153

    16. [16]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    17. [17]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    18. [18]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    19. [19]

      Ming-Zhen LiYang ZhangKun LiYa-Nan ShangYi-Zhen ZhangYu-Jiao KanZhi-Yang JiaoYu-Yuan HanXiao-Qiang CaoIn situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885

    20. [20]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

Metrics
  • PDF Downloads(9)
  • Abstract views(1082)
  • HTML views(205)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return