Citation: Lantao Liu, Huihui Liu, Zhenzhen Zuo, An-An Zhang, Zhongyi Li, Tuanjie Meng, Wei Wu, Yuanzhao Hua, Guoliang Mao. Synthesis of planar chiral isoquinolinone-fused ferrocenes through palladium-catalyzed C-H functionalization reaction[J]. Chinese Chemical Letters, ;2021, 32(1): 239-242. doi: 10.1016/j.cclet.2020.10.034 shu

Synthesis of planar chiral isoquinolinone-fused ferrocenes through palladium-catalyzed C-H functionalization reaction

    * Corresponding author at: Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
    E-mail addresses: liult05@iccas.ac.cn (L. Liu), maoguoliang@nepu.edu.cn (G. Mao).
  • Received Date: 10 September 2020
    Revised Date: 20 October 2020
    Accepted Date: 21 October 2020
    Available Online: 25 October 2020

Figures(4)

  • (S, S)-Me-BI-DIME/Pd(0)-catalyzed ennantioselective C–H functionalization of N-ferrocenyl o-bromo-benzanilides has been realized, affording isoquinolinone-fused ferrocenes with up to 97% ee. The products can be transformed into planar chiral ferrocenyl monophosphines, which demonstrate their preliminary application.
  • 加载中
    1. [1]

      (a) D. Bellocchi, A. Macchiarulo, G. Costantino, R. Pellicciari, Bioorg. Med. Chem. 13 (2009) 1151-1157;
      (b) N.L. Ka, T.Y. Na, H. Na, et al., Cancer Res. 77 (2017) 2453-2463;
      (c) Y. Nishiyama, S. Mori, M. Makishima, et al., ACS Med. Chem. Lett. 9 (2018) 641-645.

    2. [2]

      (a) S. Top, J. Tang, A. Vessières, et al., Chem. Commun. (Camb.) (1996) 955-956;
      (b) Y. Wang, P. Pigeon, S. Top, M.J. McGlinchey, G. Jaouen, Angew. Chem. Int. Ed. 54 (2015) 10230-12033;
      (c) Y. Wang, P.M. Dansette, P. Pigeon, et al., Chem. Sci. 9 (2018) 70-78;
      (d) R. Wang, H. Chen, W. Yan, et al., Eur. J. Med. Chem. 190 (2020) 112109.

    3. [3]

      (a) R.G. Arrayas, J. Adrio, J.C. Carretero, Angew. Chem. Int. Ed. 45 (2006) 7674-7715;
      (b) H.U. Blaser, B. Pugin, F. Spindler, J. Mol. Catal. A: Chem. 231 (2005) 1-20;
      (c) G.C. Fu, Acc. Chem. Res. 39 (2006) 853-860;
      (d) G.C. Fu, Acc. Chem. Res. 37 (2004) 542-547;
      (e) T.J. Colacot, Chem. Rev. 103 (2003) 3101-3118;
      (f) L.X. Dai, T. Tu, S.L. You, W.P. Deng, X.L. Hou, Acc. Chem. Res. 36 (2003) 659-667;
      (g) H.U. Blaser, W. Brieden, B. Pugin, et al., Top. Catal. 19 (2002) 3-16;
      (h) G.C. Fu, Acc. Chem. Res. 33 (2000) 412-420;
      (i) A. Togni, Angew. Chem. Int. Ed. 35 (1996) 1475-1477;
      (j) T. Hayashi, M. Kumada, Acc. Chem. Res. 15 (1982) 395-401;
      (k) L.X. Dai, X.L. Hou, Chiral Ferrocenes in Asymmetric Catalysis, Wiley-VCH, Weinheim, 2010;
      (l) P. Stepnicka, Ferrocenes, Wiley, Chichester, 2008;
      (m) A. Togni, R.L. Haltermann, Metallocenes, VCH, Weinheim, 1998;
      (n) T. Hayashi, A. Togni, Ferrocenes, VCH, Weinheim, 1995.

    4. [4]

      D. Schaarschmidt, H. Lang, Organometallics 32 (2013) 5668-5704.  doi: 10.1021/om400564x

    5. [5]

      (a) R. Giri, B.F. Shi, K.M. Engle, N. Maugel, J.Q. Yu. Chem. Soc. Rev. 38 (2009) 3242-3272;
      (b) J. Wencel-Delord, F. Colobert, Chem. Eur. J. 19 (2013) 14010-14017;
      (c) K.M. Engle, J.Q. Yu, J. Org. Chem. 78 (2013) 8927-8955;
      (d) C. Zheng, S.L. You, RSC Adv. 4 (2014) 6173-6214;
      (e) B. Ye, N. Cramer, Acc. Chem. Res. 48 (2015) 1308-1318;
      (f) S.L. You, Asymmetric Functionalization of C-H Bonds, ; RSC, Cambridge, 2015;
      (g) C.G. Newton, S.G. Wang, C.C. Oliveira, N. Cramer, Chem. Rev. 117 (2017) 8908-8976;
      (h) T.G. Saint-Denis, R.Y. Zhu, G. Chen, Q.F. Wu, J.Q. Yu, Science 359 (2018) eaao4798;
      (i) J. Diesel, N. Cramer, ACS Catal. 9 (2019) 9164-9177;
      (k) Y. Kim, C.J. Li, Green Synth. Catal. 1 (2020) 1-11.

    6. [6]

      (a) Y. Wang, A. Zhang, L. Liu, et al., Chin. J. Org. Chem. 35 (2015) 1399-1406;
      (b) L.A. Lopez, E. Lopez, Dalton Trans. 44 (2015) 10128-10135;
      (c) D.Y. Zhu, P. Chen, J.B. Xia, ChemCatChem. 8 (2016) 68-73;
      (d) D.W. Gao, Q. Gu, C. Zheng, S.L. You, Acc. Chem. Res. 50 (2017) 351-356;
      (e) J.P. Huang, Q. Gu, S.L. You, Chin. J. Org. Chem. 38 (2018) 51-61;
      (f) W.L. Duan, Chin. J. Org. Chem. 39 (2019) 3598-3599;
      (g) C.X. Liu, Q. Gu, S.L. You, Trends Analyt. Chem. 2 (2020) 737-749.

    7. [7]

      S. Siegel, H.G. Schmalz, Angew. Chem. Int. Ed. 36 (1997) 2456-2458.  doi: 10.1002/anie.199724561

    8. [8]

      (a) R. Deng, Y. Huang, X. Ma, et al., J. Am. Chem. Soc. 136 (2014) 4472-4475;
      (b) D.W. Gao, Q. Yin, Q. Gu, S.L. You, J. Am. Chem. Soc. 136 (2014) 4841-4844;
      (c) X. Ma, Z. Gu, RSC Adv. 4 (2014) 36241-36244;
      (d) L. Liu, A.A. Zhang, R.J. Zhao, et al., Org. Lett. 16 (2014) 5336-5338;
      (e) D.W. Gao, C. Zheng, Q. Gu, S.L. You, Organometallics 34 (2015) 4618-4625;
      (f) D.W. Gao, Y. Gu, S.B. Wang, Q. Gu, S.L. You, Organometallics 35 (2016) 3227-3233;
      (g) S. Zhang, J. Lu, J. Ye, W.L. Duan, Chin. J. Org. Chem. 36 (2016) 752-759;
      (h) C. Nottingham, H. Müller-Bunz, P.J. Guiry, Angew. Chem. Int. Ed. 55 (2016) 11115-11119;
      (j) Y. Liu, J. Xu, J. Zhang, X. Xu, Z. Jin, Org. Lett. 19 (2017) 5709-5712.

    9. [9]

      (a) T. Shibata, T. Shizuno, T. Sasaki, Chem. Commun. (Camb.) 51 (2015) 7802-7804;
      (b) M. Murai, K. Matsumoto, Y. Takeuchi, K. Takai, Org. Lett. 17 (2015) 3102-3105;
      (c) Q.W. Zhang, K. An, L.C. Liu, Y. Yue, W. He, Angew. Chem. Int. Ed. 54 (2015) 6918-6921;
      (d) W.T. Zhao, Z.Q. Lu, H. Zheng, X.S. Xue, D. Zhao, ACS Catal. 8 (2018) 7997-8005;
      (e) Z.J. Cai, C.X. Liu, Q. Wang, Q. Gu, S.L. You, Nature Commun. 10 (2019) 4168.

    10. [10]

      (a) A. Urbano, G. Hernández-Torres, A.M. del Hoyo, A. Martínez-Carrión, M.C. Carreño, Chem. Commun. (Camb.) 52 (2016) 6419-6422;
      (b) T. Shibata, N. Uno, T. Sasaki, K.S. Kanyiva, J. Org, Chem. 81 (2016) 6266-6272.

    11. [11]

      (a) D.W. Gao, Y.C. Shi, Q. Gu, Z.L. Zhao, S.L. You, J. Am. Chem. Soc. 135 (2013) 86-89;
      (b) C. Pi, Y. Li, X. Cui, et al., Chem. Sci. 4 (2013) 2675-2679;
      (c) Y.C. Shi, R.F. Yang, D.W. Gao, S.L. You, Beilstein J. Org. Chem. 9 (2013) 1891-1896;
      (d) C. Pi, X. Cui, X. Liu, et al., Org. Lett. 16 (2014) 5164;
      (e) D.W. Gao, Q. Gu, S.L. You, J. Am. Chem. Soc. 138 (2016) 2544-2547;
      (f) Z.J. Cai, C.X. Liu, Q. Gu, C. Zheng, S.L. You, Angew. Chem. Int. Ed. 58 (2019) 2149-2153;
      (g) Y. Huang, C. Pi, X. Cui, Y. Wu, Adv. Synth. Catal. 362 (2020) 1385-1390.

    12. [12]

      J. Xu, Y. Liu, J. Zhang, X. Xu, Z. Jin, Chem. Commun. (Camb.) 54 (2018) 689-692.  doi: 10.1039/C7CC09273C

    13. [13]

      (a) S. Luo, Z. Xiong, Y. Lu, Q. Zhu, Org. Lett. 20 (2018) 1837-1840;
      (b) M. Ito, M. Okamura, K.S. Kanyiva, T. Shibata, Organometallics 38 (2019) 4029-4035;
      (c) L. Jia, X. Liu, A.A. Zhang, et al., Chem. Commun. (Camb.) 56 (2020) 1737-1740.

    14. [14]

      L. Liu, H. Song, Y.H. Liu, L.S. Wu, B.F. Shi, ACS Catal. 10 (2020) 7117-7122.  doi: 10.1021/acscatal.0c02049

    15. [15]

      (a) T. Shibata, T. Shizuno, Angew. Chem. Int. Ed. 53 (2014) 5410-5413;
      (b) C.X. Liu, Z.J. Cai, Q. Wang, et al., CCS Chem. 2 (2020) 642-651.

    16. [16]

      W. Xie, B. Li, S. Xu, H. Song, B. Wang, Organometallics 33 (2014) 2138-2141.  doi: 10.1021/om5002606

    17. [17]

      S.B. Wang, J. Zheng, S.L. You, Organometallics 35 (2016) 1420.  doi: 10.1021/acs.organomet.6b00020

    18. [18]

      H. Chen, Y.X. Wang, Y.X. Luan, M. Ye, Angew. Chem. Int. Ed. 59 (2020) 9428-9432.

    19. [19]

      (a) G. Xu, C.H. Senanayake, W. Tang, Acc. Chem. Res. 52 (2019) 1101-1112;
      (b) H. Yang, W. Tang, Chem. Rec. 19 (2019) 1-19.

    20. [20]

      (a) T. Saget, N. Cramer, Angew. Chem. Int. Ed. 51 (2012) 12842-12845;
      (b) T. Saget, N. Cramer, Angew. Chem. Int. Ed. 52 (2013) 7865-7868;
      (c) J. Pedroni, M. Boghi, T. Saget, N. Cramer, Angew. Chem. Int. Ed. 53 (2014) 9064-9067;
      (d) C.G. Newton, E. Braconi, J. Kuziola, M.D. Wodrich, N. Cramer, Angew. Chem. Int. Ed. 57 (2018) 11040-11044.

  • 加载中
    1. [1]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    2. [2]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    3. [3]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    4. [4]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    5. [5]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    6. [6]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    7. [7]

      Wenling YuanFengli LiZhe ChenQiaoxin XuZhenhua GuanNanyu YaoZhengxi HuJunjun LiuYuan ZhouYing YeYonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788

    8. [8]

      Guang XuCuiju ZhuXiang LiKexin ZhuHao Xu . Copper-catalyzed asymmetric [4+1] annulation of yne–allylic esters with pyrazolones. Chinese Chemical Letters, 2025, 36(4): 110114-. doi: 10.1016/j.cclet.2024.110114

    9. [9]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    10. [10]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    11. [11]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    12. [12]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    13. [13]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    14. [14]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    15. [15]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    16. [16]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    17. [17]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    18. [18]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    19. [19]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    20. [20]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

Metrics
  • PDF Downloads(9)
  • Abstract views(978)
  • HTML views(158)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return