Cp*Co(Ⅲ)-catalyzed C-H amidation of azines with dioxazolones
-
* Corresponding authors.
E-mail addresses: pichao@zzu.edu.cn (C. Pi) cuixl@zzu.edu.cn (X. Cui).
Citation:
Yanzhen Huang, Chao Pi, Zhen Tang, Yangjie Wu, Xiuling Cui. Cp*Co(Ⅲ)-catalyzed C-H amidation of azines with dioxazolones[J]. Chinese Chemical Letters,
;2020, 31(12): 3237-3240.
doi:
10.1016/j.cclet.2020.08.046
T. Naito, Chem. Pharm. Bull. 56(2008) 1367-1383.
doi: 10.1248/cpb.56.1367
Y. Wu, B. Tian, C. Hu, et al., Org. Biomol. Chem. 17(2019) 5505-5508.
doi: 10.1039/C9OB00740G
C. Sambiagio, S.P. Marsden, A.J. Blacker, P.C. McGowan, Chem. Soc. Rev. 43(2014) 3525-3550.
doi: 10.1039/C3CS60289C
S. Bhunia, G.G. Pawar, S.V. Kumar, Y. Jiang, D. Ma, Angew. Chem. Int. Ed. 56(2017) 16136-16179.
doi: 10.1002/anie.201701690
C. Torborg, M. Beller, Adv. Synth. Catal. 351(2009) 3027-3043.
doi: 10.1002/adsc.200900587
F. Monnier, M. Taillefer, Angew. Chem. Int. Ed. 48(2009) 6954-6971.
doi: 10.1002/anie.200804497
Y. Park, Y. Kim, S. Chang, Chem. Rev. 117(2017) 9247-9301.
doi: 10.1021/acs.chemrev.6b00644
Y. Park, K.T. Park, J.G. Kim, S. Chang, J. Am. Chem. Soc. 137(2015) 4534-4542.
doi: 10.1021/jacs.5b01324
Y. Park, S. Jee, J.G. Kim, S. Chang, Org. Process Res. Dev. 19(2015) 1024-1029.
doi: 10.1021/acs.oprd.5b00164
J.A. Souto, P. Becker, Á. Iglesias, K. Muñiz, J. Am. Chem. Soc. 134(2012) 15505-15511.
doi: 10.1021/ja306211q
C. You, T. Yuan, Y. Huang, et al., Org. Biomol. Chem. 16(2018) 4728-4733.
doi: 10.1039/C8OB01108G
K. Shin, H. Kim, S. Chang, Acc. Chem. Res. 48(2015) 1040-1052.
doi: 10.1021/acs.accounts.5b00020
C. Pi, X. Cui, Y. Wu, J. Org. Chem. 80(2015) 7333-7339.
doi: 10.1021/acs.joc.5b01377
J.Y. Kim, S.H. Park, J. Ryu, et al., J. Am. Chem. Soc. 134(2012) 9110-9113.
doi: 10.1021/ja303527m
S.H. Park, J. Kwak, K. Shin, et al., J. Am. Chem. Soc. 136(2014) 2492-2502.
doi: 10.1021/ja411072a
L. Jie, L. Wang, D. Xiong, et al., J. Org. Chem. 83(2018) 10974-10984.
doi: 10.1021/acs.joc.8b01618
Y. Feng, Y. Li, Y. Yu, L. Wang, X. Cui, RSC Adv. 8(2018) 8450-8454.
doi: 10.1039/C8RA00524A
L. Xu, L. Wang, Y. Feng, et al., Org. Lett. 19(2017) 4343-4346.
doi: 10.1021/acs.orglett.7b02028
Y. Li, Y. Feng, L. Xu, L. Wang, X. Cui, Org. Lett. 18(2016) 4924-4927.
doi: 10.1021/acs.orglett.6b02406
B. Zhu, X. Cui, C. Pi, D. Chen, Y. Wu, Adv. Synth. Catal. 358(2016) 326-332.
doi: 10.1002/adsc.201501036
Y. Feng, Z. Zhang, Q. Fu, et al., Chin. Chem. Lett. 31(2020) 58-60.
doi: 10.1016/j.cclet.2019.05.013
H. Jung, H. Keum, J. Kweon, S. Chang, J. Am. Chem. Soc. 142(2020) 5811-5818.
doi: 10.1021/jacs.0c00868
D. Dev, N.B. Palakurthy, K. Thalluri, J. Chandra, B. Mandal, J. Org. Chem. 79(2014) 5420-5431.
doi: 10.1021/jo500292m
J. Senger, J. Melesina, M. Marek, et al., J. Med. Chem. 59(2016) 1545-1555.
doi: 10.1021/acs.jmedchem.5b01493
S. Huang, H. Li, X. Sun, L. Xu, L. Wang, X. Cui, Org. Lett. 21(2019) 5570-5574.
doi: 10.1021/acs.orglett.9b01902
L. Xu, T. Li, L. Wang, X. Cui, J. Org. Chem. 84(2019) 560-567.
doi: 10.1021/acs.joc.8b02396
X.H. Hu, X.F. Yang, T.P. Loh, ACS Catal. 6(2016) 5930-5934.
doi: 10.1021/acscatal.6b02015
J. Park, S. Chang, Angew. Chem. Int. Ed. 54(2015) 14103-14107.
doi: 10.1002/anie.201505820
Y. Park, K.T. Park, J.G. Kim, S. Chang, J. Am. Chem. Soc. 137(2015) 4534-4542.
doi: 10.1021/jacs.5b01324
X. Mi, W. Feng, C. Pi, X. Cui, J. Org. Chem. 84(2019) 5305-5312.
doi: 10.1021/acs.joc.9b00300
Y. He, C. Pi, Y. Wu, X. Cui, Chin. Chem. Lett. 31(2020) 396-400.
doi: 10.1016/j.cclet.2019.09.025
J. Ren, C. Pi, Y. Wu, X. Cui, Org. Lett. 21(2019) 4067-4071.
doi: 10.1021/acs.orglett.9b01246
N.K. Mishra, Y. Oh, M. Jeon, et al., Eur. J. Org. Chem. 2016(2016) 4976-4980.
doi: 10.1002/ejoc.201601096
K.M. van Vliet, B. de Bruin, ACS Catal. 10(2020) 4751-4769.
doi: 10.1021/acscatal.0c00961
G. Le Goff, J. Ouazzani, Bioorg. Med. Chem. 22(2014) 6529-6544.
doi: 10.1016/j.bmc.2014.10.011
L.M. Blair, J. Sperry, J. Nat. Prod. 76(2013) 794-812.
doi: 10.1021/np400124n
Y. Zhu, H. Jin, Y. Huang, Chem. Commun. (Camb.) 55(2019) 10135-10137.
doi: 10.1039/C9CC05276C
W. Tang, Y. Xiang, A. Tong, J. Org. Chem. 74(2009) 2163-2166.
doi: 10.1021/jo802631m
C. Chakravarty, B. Mandal, P. Sarkar, J. Phys. Chem. C 122(2018) 3245-3255.
doi: 10.1021/acs.jpcc.7b11609
M.X. Wu, Y.W. Yang, Chin. Chem. Lett. 28(2017) 1135-1143.
doi: 10.1016/j.cclet.2017.03.026
W. Han, G. Zhang, G. Li, H. Huang, Org. Lett. 16(2014) 3532-3535.
doi: 10.1021/ol501483k
J. Wen, A. Wu, M. Wang, J. Zhu, J. Org, Chem. 80(2015) 10457-10463.
J. Wen, A. Wu, Y. Miao, J. Zhu, Tetrahedron Lett. 56(2015) 5512-5516.
doi: 10.1016/j.tetlet.2015.08.025
Y. Yu, C. Kuai, R. Chauvin, et al., J. Org. Chem. 82(2017) 8611-8616.
doi: 10.1021/acs.joc.7b01472
D.S. Deshmukh, P.A. Yadav, B.M. Bhanage, Org. Biomol. Chem.17(2019) 3489-3496.
doi: 10.1039/C9OB00174C
H.M. Vu, J.Y. Yong, F.W. Chen, X.Q. Li, G.Q. Shi, J. Org. Chem. 85(2020) 4963-4972.
doi: 10.1021/acs.joc.0c00138
P.W. Tan, A.M. Mak, M.B. Sullivan, D.J. Dixon, J. Seayad, Angew. Chem. Int. Ed. 56(2017) 16550-16554.
doi: 10.1002/anie.201709273
J.S. Sun, M. Liu, J. Zhang, L. Dong, J. Org. Chem. 83(2018) 10555-10563.
doi: 10.1021/acs.joc.8b01354
J. Park, S. Chang, Angew. Chem. Int. Ed. 54(2015) 14103-14107.
doi: 10.1002/anie.201505820
Y. Liu, F. Xie, A.Q. Jia, X. Li, Chem. Commun. (Camb.) 54(2018) 4345-4348.
doi: 10.1039/C8CC01447G
B. Khan, V. Dwivedi, B. Sundararaju, Adv. Synth. Catal. 362(2020) 1195-1200.
doi: 10.1002/adsc.201901267
J. Huang, J. Ding, T.M. Ding, et al., Org. Lett. 21(2019) 7342-7345.
doi: 10.1021/acs.orglett.9b02632
D.-G. Yu, M. Suri, F. Glorius, J. Am. Chem. Soc. 135(2013) 8802-8805.
doi: 10.1021/ja4033555
C. Brouwer, K. Jenko, S.S. Zoghbi, R.B. Innis, V.W. Pike, J. Med. Chem. 57(2014) 6240-6251.
doi: 10.1021/jm5007947
C.P. Jones, K.W. Anderson, S.L. Buchwald, J. Org. Chem. 72(2007) 7968-7973.
doi: 10.1021/jo701384n
J. Huang, Y. Chen, A.O. King, et al., Org. Lett. 10(2008) 2609-2612.
doi: 10.1021/ol800837z
C. Eidamshaus, T. Triemer, H.U. Reissig, Synthesis 2011(2011) 3261-3266.
doi: 10.1055/s-0030-1260198
A. Fuerstner, A. Hupperts, A. Ptock, E. Janssen, J. Org. Chem. 59(1994) 5215-5229.
doi: 10.1021/jo00097a024
A. Fuerstner, A. Hupperts, J. Am. Chem. Soc. 117(1995) 4468-4475.
doi: 10.1021/ja00121a004
A. Fürstner, D.N. Jumbam, Tetrahedron 48(1992) 5991-6010.
doi: 10.1016/S0040-4020(01)89848-3
Y. Liang, Y.F. Liang, C. Tang, Y. Yuan, N. Jiao, Chem. Eur. J. 21(2015) 16395-16399.
doi: 10.1002/chem.201503533
P. Shi, L. Wang, K. Chen, J. Wang, J. Zhu, Org. Lett. 19(2017) 2418-2421.
doi: 10.1021/acs.orglett.7b00968
Sandip N.Gavade , Ravi S.Balaskar , Madhav S.Mane , Pramod N.Pabrekar , Murlidhar S.Shingare , Dhananjay V.Mane . An efficient method for the N-arylation of phenylurea via copper catalyzed amidation. Chinese Chemical Letters, 2011, 22(6): 675-678. doi: 10.1016/j.cclet.2010.12.018
Zhao Ling-Ling , Han Ying , Yan Chao-Guo . Construction of [1]rotaxanes with pillar[5]arene as the wheel and terpyridine as the stopper. Chinese Chemical Letters, 2020, 31(1): 81-83. doi: 10.1016/j.cclet.2019.04.024
Ma Lianfeng , Li Huijing , Wu Yanchao . Base-Promoted Green Synthesis of Quinolinamide Derivatives. Chemistry, 2019, 82(6): 516-521.
Li Zhejian , Gao Bao , Huang Hanmin . Amidation of Acid Chlorides to Primary Amides with Ammonium Salts. Chinese Journal of Organic Chemistry, 2018, 38(6): 1431-1436. doi: 10.6023/cjoc201801034
Zhao Xia GUO , Jie YU , Jian YU . Surface Modification of Nanometer Silica by N, N'-dicyclohexyl-carbodiimide Mediated Amidation. Chinese Chemical Letters, 2001, 12(10): 933-934.
Xie Jianwei , Shen Li , Zhang Jie , Gong Shaofeng . Transition-Metal-Free Decarboxylative Amidation of Aryl α-Keto Acids with Diphenylphosphoryl Azide: New Avenue for the Preparation of Primary Aryl Amides. Chinese Journal of Organic Chemistry, 2020, 40(12): 4284-4289. doi: 10.6023/cjoc202006030
Chang Ping SHAO . SYNTHESIS AND CHARACTERIZATION OF (PPh3)3Co(μ-CO)2 V(CO)2Cp AND (PPh3)HPt(μ-CO)(μ-PPh2)V(CO)2Cp. Chinese Chemical Letters, 1996, 7(1): 91-92.
Qi Sun , Cheng-Jun Wang , Shan-Shan Gong , Yong-Jian Ai , Hong-Bin Sun . Cp2ZrCl2-catalyzed synthesis of 2-aminovinyl benzimidazoles under microwave conditions. Chinese Chemical Letters, 2015, 26(3): 297-300. doi: 10.1016/j.cclet.2014.11.014
Wen LI , Ye LIU , Yuan Qi YIN . THE ELECTRONIC STRUCTURES OF Cp2ZrR2 (R:-H,-CO,-OCH)AND [Zr(CO)6]2-. Chinese Chemical Letters, 1995, 6(6): 539-542.
Chang Tao QiAN , Jian Hua GUO . SYNTHESIS AND CHARACTERIZATION OF HETEROBIMETALLIC COMPLEXES: (Cp2LnOCH2C6H5)Cr(CO)3(Ln=Gd,Dy,Yb,Y). Chinese Chemical Letters, 1995, 6(3): 261-260.
Zhao Sen , Li Chunpu , Xu Bin , Liu Hong . Cp*Rh(Ⅲ)-Catalyzed C—H 3, 3-Difluoroallylation of Indoles and N-Iodosuccinimide-Mediated Cyclization for the Synthesis of Fluorinated 3, 4-Dihydropyrimido-[1, 6-a]-indol-1(2H)-one Derivatives. Chinese Journal of Organic Chemistry, 2020, 40(6): 1549-1562. doi: 10.6023/cjoc202004039
Guo Dong ZHENG , Qing Da AN , Yu Wen LIU , Ying Jun WANG , Xi Zhang CAO . ELECTROCARBOXYLATION OF ORGANIC COMPOUNDS WITH CARBON DIOXIDE CATALYZED BY METALLOPORPHYRINS(Ⅱ)--ELECTROSYNTHESIS OF SOME ORGANIC COMPOUNDS WITH CO2 CATALYZED BY CoTPP. Chinese Chemical Letters, 1992, 3(4): 265-266.
Rui Qi SONG , Jian Qing ZENG , Bing ZHONG . Effect of Co-solvent on the Palladium Catalyzed Alkoxycarbonylation of Allyl Bromide in Supercritical CO2. Chinese Chemical Letters, 2002, 13(10): 933-934.
WANG Yong-Cheng , JIA Yi-Ming , WANG Wen-Xue , MA Pan-Pan . Theoretical Investigation for Two-state Reactivity of CO2 Hydrogenation Catalyzed by Ru in Gas Phase. Chinese Journal of Structural Chemistry, 2016, 35(12): 1819-1828. doi: 10.14102/j.cnki.0254-5861.2011-1119
Yuan-Ye Jiang , Hai-Zhu Yu , Jing Shi . Mechanistic study on the regioselectivity of Co-catalyzed hydroacylation of 1,3-dienes. Chinese Chemical Letters, 2015, 26(1): 58-62. doi: 10.1016/j.cclet.2014.10.021
Pin Ji Chai , Yong Shu Li , Cheng Xia Tan . An efficient and convenient method for preparation of disulfides from thiols using air as oxidant catalyzed by Co-Salophen. Chinese Chemical Letters, 2011, 22(12): 1403-1406. doi: 10.1016/j.cclet.2011.06.007
Chen Zhi , Shi Xiao-Xiao , Ge Dong-Qin , Jiang Zhen-Zhen , Jin Qi-Qi , Jiang Hua-Jiang , Wu Jia-Shou . Facile synthesis of indoles by K2CO3 catalyzed cyclization reaction of 2-ethynylanilines in water. Chinese Chemical Letters, 2017, 28(2): 231-234. doi: 10.1016/j.cclet.2016.07.022
Xu Zhang , Xin Guo , Li Ping Yang , Wen Hao Hu . Rh(Ⅱ) and Zn(Ⅱ) co-catalyzed multi-component reaction for the synthesis of vicinal diols. Chinese Chemical Letters, 2009, 20(11): 1299-1302. doi: 10.1016/j.cclet.2009.06.014
Ming Xia LI , Hai Tao YU , Hong Gang FU , Ze Sheng LI , Jia Zhong SUN . Three Novel Isomers of FCH2CP System. Chinese Chemical Letters, 2004, 15(2): 250-252.
Xiao-Na Ke , Casi M. Schienebeck , Chen-Chen Zhou , Xiu-Fang Xu , Wei-Ping Tang . Mechanism and reactivity of rhodium-catalyzed intermolecular [5 + 1] cycloaddition of 3-acyloxy-1,4-enyne (ACE) and CO: A computational study. Chinese Chemical Letters, 2015, 26(6): 730-734. doi: 10.1016/j.cclet.2015.03.016