Citation: Kaida Zhou, Jianqiang Chen, Jie Wu. Assembly of 3-sulfonated 2H-pyrrol-2-ones through the insertion of sulfur dioxide with allenoic amides[J]. Chinese Chemical Letters, ;2020, 31(12): 2996-2998. doi: 10.1016/j.cclet.2020.08.037 shu

Assembly of 3-sulfonated 2H-pyrrol-2-ones through the insertion of sulfur dioxide with allenoic amides

    * Corresponding author at: School of Pharmaceutical and Materials Engineering &Institute for Advanced Studies Taizhou University Taizhou 318000 China.
    E-mail address: jie_wu@fudan.edu.cn (J. Wu).
  • Received Date: 27 July 2020
    Revised Date: 6 August 2020
    Accepted Date: 6 August 2020
    Available Online: 15 December 2020

Figures(3)

  • Generation of 3-sulfonated 2H-pyrrol-2-ones through a three-component reaction of allenoic amides, sulfur dioxide, and aryldiazonium tetrafluoroborates under metal-free conditions is achieved. This transformation proceeds under mild conditions without the addition of catalysts or additives, giving rise to 3-sulfonated 2H-pyrrol-2-ones in moderate to good yields. Good functional group compatibility is observed. A plausible mechanism is proposed, which is initiated by aryl radicals formed in situ from aryldiazonium tetrafluoroborates and DABCO·(SO2)2. Additionally, excellent chemoselectivity and regioselectivity are presented in this transformation.
  • 加载中
    1. [1]

      (a) K.C. Nicolaou, L. Shi, M. Lu, et al., Angew. Chem. Int. Ed. 53 (2014) 10970-10974;
      (b) H. Uchiro, N. Shionozaki, R. Tanaka, et al., Tetrahedron Lett. 54 (2013) 506-511;
      (c) R. Tanaka, K. Ohishi, N. Takanashi, et al., Org. Lett. 14 (2012) 4886-4889.

    2. [2]

      (a) L.N. Kirpotina, I.A. Schepetkin, A.I. Khlebnikov, et al., Biochem. Pharmacol. 142 (2017) 120-132;
      (b) K. Ma, P. Wang, W. Fu, et al., Bioorg. Med. Chem. Lett. 21 (2011) 6724-6727;
      (c) C. Zhuang, Z. Miao, L. Zhu, et al., J. Med. Chem. 55 (2012) 9630-9642;
      (d) C. Peifer, R. Selig, K. Kinkel, et al., J. Med. Chem. 51 (2008) 3814-3824.

    3. [3]

      X. del Corte, A. López-Francés, A. Maestro, et al., J. Org. Chem. 85(2020) 14369-14383.  doi: 10.1021/acs.joc.0c00280

    4. [4]

      (a) K.E.O. Ylijoki, J.M. Stryker, Chem. Rev. 113 (2013) 2244-2266;
      (b) M.E. Garst, B.J. McBride, J.G. Douglass Ⅲ, Tetrahedron Lett. 24 (1983) 1675-1678.

    5. [5]

      (a) J.T. Palmer, D. Rasnick, J.L. Klaus, D. Brömme, J. Med. Chem. 38 (1995) 3193-3196;
      (b) D.C. Meadows, T.B. Mathews, T.W. North, et al., J. Med. Chem. 48 (2005) 4526-4534;
      (c) D.C. Meadows, J. Gervay-Hague, Med. Res. Rev. 26(2006) 793-814;
      (d) R. Ettari, E. Nizi, M.E. Di Francesco, et al., J. Med. Chem. 51 (2008) 988-996;
      (e) R. van der Westhuyzen, E. Strauss, J. Am. Chem. Soc. 132 (2010) 12853-12855.

    6. [6]

      (a) G. Qiu, K. Zhou, L. Gao, J. Wu, Org. Chem. Front. 5 (2018) 691-705;
      (b) K. Hofman, N. Liu, G. Manolikakes, Chem. Eur. J. 24 (2018) 11852-11863;
      (c) G. Liu, C. Fan, J. Wu, Org. Biomol. Chem. 13 (2015) 1592-1599;
      (d) G. Qiu, L. Lai, J. Cheng, J. Wu, Chem. Commun. 54 (2018) 10405-10414;
      (e) G. Qiu, K. Zhou, J. Wu, Chem. Commun. 54 (2018) 12561-12569;
      (f) A.S. Deeming, E.J. Emmett, C.S. Richards-Taylor, M.C. Willis, Synthesis 46 (2014) 2701-2710;
      (g) S. Ye, M. Yang, J. Wu, Chem. Commun. 56 (2020) 4145-4155;
      (h) S. Ye, G. Qiu, J. Wu, Chem. Commun. 55 (2019) 1013-1019;
      (i) F.S. He, M. Yang, S. Ye, J. Wu, Chin. Chem. Lett. 31 (2020), doi: http://dx.doi.org/10.1016/j.cclet.2020.04.043.

    7. [7]

      (a) D. Zheng, Y. An, Z. Li, J. Wu, Angew. Chem. Int. Ed. 53 (2014) 2451-2454;
      (b) D. Zheng, J. Yu, J. Wu, Angew. Chem. Int. Ed. 55 (2016) 11925-11929;
      (c) X. Gong, M. Wang, S. Ye, J. Wu, Org. Lett. 21 (2019) 1156-1160;
      (d) S. Ye, D. Zheng, J. Wu, G. Qiu, Chem. Commun. 55 (2019) 2214-2217;
      (e) S. Ye, Y. Li, J. Wu, Z. Li, Chem. Commun. 55 (2019) 2489-2492;
      (f) X. Gong, X. Li, W. Xie, J. Wu, S. Ye, Org. Chem. Front. 6 (2019) 1863-1867;
      (g) S. Ye, T. Xiang, X. Li, J. Wu, Org. Chem. Front. 6 (2019) 2183-2199;
      (h) J. Zhang, W. Xie, S. Ye, J. Wu, Org. Chem. Front. 6 (2019) 2254-2259;
      (i) F.S. He, X. Gong, P. Rojsitthisak, J. Wu, J. Org. Chem. 84 (2019) 13159-13163;
      (j) S. Ye, X. Li, W. Xie, J. Wu, Asian J. Org. Chem. 8 (2019) 893-898.

    8. [8]

      (a) K. Zhou, J.B. Liu, W. Xie, S. Ye, J. Wu, Chem. Commun. 56 (2020) 2554-2557;
      (b) S. Ye, K. Zhou, P. Rojsitthisak, J. Wu, Org. Chem. Front. 7 (2020) 14-18;
      (c) J. Zhang, M. Yang, J.B. Liu, F.S. He, J. Wu, Chem. Commun. 56 (2020) 3225-3228;
      (d) X. Gong, M. Yang, J.B. Liu, F.S. He, X. Fan, J. Wu, Green Chem. 22 (2020) 1906-1910;
      (e) X. Gong, M. Yang, J.B. Liu, F.S. He, J. Wu, Org. Chem. Front. 7 (2020) 938-943.

    9. [9]

      (a) Y. Li, S. Chen, M. Wang, X. Jiang, Angew. Chem. Int. Ed. 59 (2020) 8907-8911;
      (b) Y. Meng, M. Wang, X. Jiang, Angew. Chem. Int. Ed. 59(2020) 1346-1353;
      (c) C.M. Huang, J. Li, S.Y. Wang, S.J. Ji, Chin. Chem. Lett. 31 (2020) 1923-1926;
      (d) M. Wang, J. Zhao, X. Jiang, ChemSusChem 12 (2019) 3064-3068;
      (e) M. Wang, Q. Fan, X. Jiang, Green Chem. 20 (2018) 5469-5473;
      (f) L.W. Ye, C. Shua, F. Gagosz, Org. Biomol. Chem. 12 (2014) 1833-1845;
      (g) Y. Park, S. Chang, Nat. Catal. 2 (2019) 219-227;
      (h) Q. Xing, C.M. Chan, Y.W. Yeung, W.Y. Yu, J. Am. Chem. Soc. 141 (2019) 3849-3853;
      (i) B.H. Zhu, C.M. Wang, H.Y. Su, L.W. Ye, Chin. J. Chem. 37 (2019) 58-62;
      (j) C. Shu, M.Q. Liu, S.S. Wang, L. Li, L.W. Ye, J. Org. Chem. 78 (2013) 3292-3299.

  • 加载中
    1. [1]

      Huang Cheng-MiLi JianWang Shun-YiJi Shun-Jun . TFA promoted multi-component reaction of aryldiazonium with sodium metabisulphite and thiols: Construction of thiosulfonate under transition-metal free conditions. Chinese Chemical Letters, 2020, 31(7): 1923-1926. doi: 10.1016/j.cclet.2019.12.032

    2. [2]

      Bin SunWen-Peng MaiLiang-Ru YangPu MaoJin-Wei YuanYong-Mei Xiao . A novel and facile synthesis of 4-arylquinolin-2(1H)-ones under metal-free conditions. Chinese Chemical Letters, 2015, 26(8): 977-979. doi: 10.1016/j.cclet.2015.05.008

    3. [3]

      Jin-Yang ChenYing-Wu LinWei-Min He . Metal-free synthesis of 1, 2, 3-benzotriazines. Chinese Chemical Letters, 2020, 31(12): 2989-2990. doi: 10.1016/j.cclet.2020.03.034

    4. [4]

      Jian Bin Zhang Chun Ping Li Tian Rui Huo Zhan Ying Liu Li Hua Liu Tong Zhang Dong Yan Zhang Xiong Hui Wei . Photochemical reaction of magnesium tetraphenyl porphyrin with sulfur dioxide. Chinese Chemical Letters, 2010, 21(7): 787-789. doi: 10.1016/j.cclet.2010.03.023

    5. [5]

      Xu Xin-MingChen De-MaoWang Zu-Li . Recent advances in sulfenylation of C(sp3)-H bond under transition metal-free conditions. Chinese Chemical Letters, 2020, 31(1): 49-57. doi: 10.1016/j.cclet.2019.05.048

    6. [6]

      Min JiangHai-Jun YangYong LiZhi-Ying JiaHua Fu . Metal-free synthesis of substituted phenols from arylboronic acids in water at room temperature. Chinese Chemical Letters, 2014, 25(05): 715-719. doi: 10.1016/j.cclet.2014.03.018

    7. [7]

      Ke YangYi LiMengjie SongShengfei DaiZheng-Yi LiXiaoqiang Sun . Metal-free direct C(sp3)—H functionalization of 2-alkylthiobenzoic acid to access 1, 3-benzooxathiin-4-one. Chinese Chemical Letters, 2021, 32(1): 146-149. doi: 10.1016/j.cclet.2020.11.036

    8. [8]

      Wang GuodongGuo YanhuiWan Jieping . Base-Promoted, Metal- and Oxidant-Free C=C Bond Cleavage in Enaminones for Ambient Synthesis of NH2-Amidines. Chinese Journal of Organic Chemistry, 2020, 40(3): 645-650. doi: 10.6023/cjoc201912018

    9. [9]

      Xu JunchaoYuan HouqunZeng LintaoBao Guangming . Recent progress in Michael addition-based fluorescent probes for sulfur dioxide and its derivatives. Chinese Chemical Letters, 2018, 29(10): 1456-1464. doi: 10.1016/j.cclet.2018.08.012

    10. [10]

      Na MengYufen LvQishun LiuRuisheng LiuXiaohui ZhaoWei Wei . Visible-light-induced three-component reaction of quinoxalin-2(1H)-ones, alkenes and CF3SO2Na leading to 3-trifluoroalkylated quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2021, 32(1): 258-262. doi: 10.1016/j.cclet.2020.11.034

    11. [11]

      He ShuaiqiChen XiaolanZeng FanlinLu PeipeiPeng YuyuQu LingboYu Bing . Visible-light-promoted oxidative decarboxylation of arylacetic acids in air: Metal-free synthesis of aldehydes and ketones at room temperature. Chinese Chemical Letters, 2020, 31(7): 1863-1867. doi: 10.1016/j.cclet.2019.12.031

    12. [12]

      Zhou ChaoDiao PinhuiLi XiaojiGe YanqinGuo Cheng . Facile photochemical synthesis of α-ketoamides and quinoxalines from amines and benzoylacetonitrile under mild conditions. Chinese Chemical Letters, 2019, 30(2): 371-374. doi: 10.1016/j.cclet.2018.06.019

    13. [13]

      Yuanqing SunYiming OuyangJiaqing LuoHuihui CaoXiang LiJingwen MaJian LiuYuanhao WangLin Lu . Biomass-derived nitrogen self-doped porous activation carbon as an effective bifunctional electrocatalysts. Chinese Chemical Letters, 2021, 32(1): 92-98. doi: 10.1016/j.cclet.2020.09.027

    14. [14]

      Xiaobo Wang Shiguo Wu Weixin Zou Shuohan Yu Keting Gui Lin Dong . Fe-Mn/Al2O3 catalysts for low temperature selective catalytic reduction of NO with NH3. Chinese Journal of Catalysis, 2016, 37(8): 1314-1323. doi: 10.1016/S1872-2067(15)61115-9

    15. [15]

      Hai-Peng GongYue ZhangYu-Xia DaZhang ZhangZheng-Jun QuanXi-Cun Wang . Direct amination of pyrimidin-2-yl tosylates with aqueous ammonia under metal-free and mild conditions. Chinese Chemical Letters, 2015, 26(6): 667-671. doi: 10.1016/j.cclet.2015.01.034

    16. [16]

      Han Li-HuaLi Jing-YuanSong Qing-WenZhang KanZhang Qian-XiaSun Xiao-FangLiu Ping . Thermodynamic favorable CO2 conversion via vicinal diols and propargylic alcohols: A metal-free catalytic method. Chinese Chemical Letters, 2020, 31(2): 341-344. doi: 10.1016/j.cclet.2019.06.030

    17. [17]

      Xu TongMa BenyuanLiang JieYue LuchaoLiu QianLi TingshuaiZhao HaitaoLuo YonglanLu SiyuSun Xuping . Recent Progress in Metal-Free Electrocatalysts toward Ambient N2 Reduction Reaction. Acta Physico-Chimica Sinica, 2021, 37(7): 2009043-0. doi: 10.3866/PKU.WHXB202009043

    18. [18]

      Xu XinmingYang HanlinLi Wenzhong . Transition Metal-Free Direct C-H Bond Sulfenylation of Alkenes and Arenes. Chinese Journal of Organic Chemistry, 2020, 40(7): 1912-1925. doi: 10.6023/cjoc201912044

    19. [19]

      Rui-Ying ZhangMeng-Meng XuHai-Yan LiXiao-Ping XuShun-Jun Ji . Cascade reaction involving intramolecular oxygen-migration: Efficient synthesis of 3-allylidene-indolin-2-one compounds under metal-free conditions. Chinese Chemical Letters, 2021, 32(1): 433-436. doi: 10.1016/j.cclet.2020.03.070

    20. [20]

      Dong DaoqingLi GuanghuiChen DemaoSun YuanyuanHan QingqingWang ZuliXu XinmingYu Xianyong . Metal-Free C-2 Alkylation of N-Oxides with Ethers via Radical Cross-Coupling Reactions. Chinese Journal of Organic Chemistry, 2020, 40(6): 1766-1771. doi: 10.6023/cjoc202002002

Metrics
  • PDF Downloads(6)
  • Abstract views(75)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return