Citation: Qing-Wen Gui, Fan Teng, Sheng-Neng Ying, Liu Yang, Tao Guo, Jian-Xin Tang, Jin-Yang Chen, Zhong Cao, Wei-Min He. Ultrasound-assisted tandem synthesis of tri- and tetra-substituted pyrrole-2-carbonitriles from alkenes, TMSCN and N, N-disubstituted formamides[J]. Chinese Chemical Letters, ;2020, 31(12): 3241-3244. doi: 10.1016/j.cclet.2020.07.017 shu

Ultrasound-assisted tandem synthesis of tri- and tetra-substituted pyrrole-2-carbonitriles from alkenes, TMSCN and N, N-disubstituted formamides

    * Corresponding author.
    E-mail address: weiminhe2016@yeah.net (W.-M. He).
  • Received Date: 23 May 2020
    Revised Date: 15 June 2020
    Accepted Date: 15 June 2020
    Available Online: 15 December 2020

Figures(4)

  • An energy-saving and eco-friendly method for the efficient construction of various tri- and tetra-substituted pyrrolecarbonitriles through ultrasound-assisted multicomponent tandem reaction of readily available alkenes, TMSCN and N, N-disubstituted formamides within 40 min under metal-, solvent-free and mild conditions was developed. The dual role of iodine (catalyst and oxidant) notably simplified the reaction conditions and reduced the chemical waste generated.
  • 加载中
    1. [1]

      G. Chatel, R.S. Varma, Green Chem. 21(2019) 6043-6050.

    2. [2]

      (a) S.G. Pharande, A.R. Corrales Escobosa, R. Gamez-Montano, Green Chem.19(2017) 1259-1262;
      (b) C. Wu, L.H. Lu, A.Z. Peng, et al., Green Chem. 20(2018) 3683-3688;
      (c) L.H. Lu, S.J. Zhou, M. Sun, et al., ACS Sustain. Chem. Eng. 7(2019) 1574-1579.

    3. [3]

      (a) M.H. Huang, W.J. Hao, B. Jiang, Chem. Asian J. 13(2018) 2958-2977;
      (b) M.H. Xu, K.L. Dai, Y.Q. Tu, et al., Chem. Commun. 54(2018) 7685-7688;
      (c) S.S. Jiang, Y.C. Wu, S.Z. Luo, et al., Chem. Commun. 55(2019) 12805-12808;
      (d) K. Sun, B. Luan, Z. Liu, et al., Org. Biomol. Chem. 17(2019) 4208-4211;
      (e) C. Wan, R.J. Song, J.H. Li, Org. Lett. 21(2019) 2800-2803;
      (f) H. Ruan, L.G. Meng, L. Zhu, L. Wang, Adv. Synth. Catal. 361(2019) 3217-3222;
      (g) Q. Liu, F. Liu, H. Yue, et al., Adv. Synth. Catal. 361(2019) 5277-5282;
      (h) L. Zhao, P. Li, H. Zhang, L. Wang, Org. Chem. Front. 6(2019) 87-93;
      (i) G.P. Yang, X. Wu, B. Yu, C. Hu, ACS Sustain. Chem. Eng. 7(2019) 3727-3732;
      (j) X. Wang, Y.F. Han, X.H. Ouyang, R.J. Song, J.H. Li, Chem. Commun. 55(2019) 14637-14640.

    4. [4]

      (a) S. Chen, Y. Li, P. Ni, H. Huang, G.J. Deng, Org. Lett. 18(2016) 5384-5387;
      (b) H. Hu, X. Chen, K. Sun, et al., Org. Chem. Front. 5(2018) 2925-2929;
      (c) F.L. Zeng, K. Sun, X.L. Chen, et al., Adv. Synth. Catal. 361(2019) 5176-5181;
      (d) J. Lin, R.J. Song, M. Hu, J.H. Li, Chem. Rec. 19(2019) 440-451;
      (e) X.C. Liu, K. Sun, Q.Y. Lv, et al., New J. Chem. 43(2019) 12221-12224;
      (f) L. Zou, P. Li, B. Wang, L. Wang, Green Chem. 21(2019) 3362-3369.

    5. [5]

      (a) L. Wang, D. Xiong, L. Jie, C. Yu, X. Cui, Chin. Chem. Lett. 29(2018) 907-910;
      (b) X. Gong, G. Li, Z. Gan, et al., Asian J. Org. Chem. 8(2019) 1472-1478;
      (c) S. Peng, Y.X. Song, J.Y. He, et al., Chin. Chem. Lett. 30(2019) 2287-2290;
      (d) G. Li, Q. Yan, X. Gong, X. Dou, D. Yang, ACS Sustain. Chem. Eng. 7(2019) 14009-14015;
      (e) Z. Wang, W.M. He, Chin. J. Org. Chem. 39(2019) 3594-3595;
      (f) L. Wang, Y. Zhang, M. Zhang, et al., Tetrahedron Lett. 60(2019) 1845-1848;
      (g) W. Huang, J. Xu, C. Liu, Z. Chen, Y. Gu, J. Org. Chem. 84(2019) 2941-2950;
      (h) L. Wang, M. Zhang, Y. Zhang, et al., Chin. Chem. Lett. 31(2020) 67-70;
      (i)M. Li, X.Dong, N. Zhang, F. Jérôme, Y.Gu, GreenChem. 21(2019) 4650-4655;
      (j) Y. Wu, C. Pi, X. Cui, Y. Wu, Org. Lett. 22(2020) 361-364.

    6. [6]

      (a) Z. Zhang, W. Zhang, J. Li, et al., J. Org. Chem. 79(2014) 11226-11233;
      (b) A.H. Zhou, Q. He, C. Shu, et al., Chem. Sci. 6(2015) 1265-1271;
      (c) C. Shu, Y.H. Wang, C.H. Shen, et al., Org. Lett. 18(2016) 3254-3257;
      (d) Z.W. Gilbert, R.J. Hue, I.A. Tonks, Nat. Chem. 8(2016) 63-68;
      (e) T. Li, H. Yan, X. Li, C. Wang, B. Wan, J. Org. Chem. 81(2016) 12031-12037;
      (f) B.Y. Cheng, Y.N. Wang, T.R. Li, L.Q. Lu, W.J. Xiao, J. Org. Chem. 82(2017) 12134-12140;
      (g) Y. Liu, X. Yi, X. Luo, C. Xi, J. Org. Chem. 82(2017) 11391-11398;
      (h) A. Kumar, N. Tadigoppula Ramanand, Green Chem. 19(2017) 5385-5389;
      (i) Z. Tian, J. Xu, B. Liu, Q. Tan, B. Xu, Org. Lett. 20(2018) 2603-2606;
      (j) A. Kondoh, A. Iino, S. Ishikawa, T. Aoki, M. Terada, Chem. Eur. J. 24(2018) 15246-15253;
      (k) L. Li, Q. Chen, X. Xiong, et al., Chin. Chem. Lett. 29(2018) 1893-1896;
      (l) X.Q. Zhu, H. Yuan, Q. Sun, et al., Green Chem. 20(2018) 4287-4291;
      (m) G. Cheng, W. Lv, L. Xue, Green Chem. 20(2018) 4414-4417;
      (n) D. Chen, Y. Shan, J. Li, et al., Org. Lett. 21(2019) 4044-4048;
      (o) J. Cen, Y. Wu, J. Li, et al., Org. Lett. 21(2019) 2090-2094;
      (p) L.Y. Xie, S. Peng, T.G. Fan, et al., Sci. China Chem. 62(2019) 460-464;
      (q) W. Huang, S. Chen, Z. Chen, et al., J. Org. Chem. 84(2019) 5655-5666;
      (r) T. Schitter, S. Stammwitz, P.G. Jones, D.B. Werz, Org. Lett. 21(2019) 9415-9419;
      (s) Q.W. Gui, X. He, W. Wang, et al., Green Chem. 22(2020) 118-122;
      (t) G. Vengatesh, M. Sundaravadivelu, S. Muthusubramanian, J. Mol. Struct. 1199(2020) 126980;
      (u) L. Qi, R. Li, X. Yao, et al., J. Org. Chem. 85(2020) 1097-1108.

    7. [7]

      (a) J. Jiang, H. Huang, G.J. Deng, Green Chem. 21(2019) 986-990;
      (b) S. Liu, K. Chen, W.J. Hao, et al., J. Org. Chem. 84(2019) 1964-1971;
      (c)Z.Xu, G.J.Deng, F.Zhang, H.Chen, H.Huang, Org.Lett.21(2019)8630-8634;
      (d) H. Huang, Z. Qu, X. Ji, G.J. Deng, Org. Chem. Front. 6(2019) 1146-1150;
      (e) X.Y. Qin, L. He, J. Li, et al., Chem. Commun. 55(2019) 3227-3230;
      (f) S. Ye, X. Li, W. Xie, J. Wu, Asian J. Org. Chem. 8(2019) 893-898;
      (g) G.H. Li, D.Q. Dong, Q. Deng, S.Q. Yan, Z.L. Wang, Synthesis 51(2019) 3313-3319;
      (h) J. Xu, W. Huang, R. Bai, et al., Green Chem. 21(2019) 2061-2069.

    8. [8]

      X.Q. Mou, Z.L. Xu, L. Xu, et al., Org. Lett. 18(2016) 4032-4035.  doi: 10.1021/acs.orglett.6b01883

    9. [9]

      (a) W.H. Bao, Z. Wang, X. Tang, et al., Chin. Chem. Lett. 30(2019) 2259-2262;
      (b) K.J. Liu, T.Y. Zeng, J.L. Zeng, et al., Chin. Chem. Lett. 30(2019) 2304-2308;
      (c) L.H. Lu, Z. Wang, W. Xia, et al., Chin. Chem. Lett. 30(2019) 1237-1240;
      (d) W.M. He, Y.W. Lin, D.H. Yu, Sci. China Chem. 63(2020) 291-293;
      (e) Z. Cao, Q. Zhu, Y.W. Lin, W.M. He, Chin. Chem. Lett. 30(2019) 2132-2138.

    10. [10]

      (a) Z. Shi, L. Wang, X. Cui, Chin. J. Org. Chem. 39(2017) 1596-1612;
      (b) H. Li, P. Zhou, F. Xie, et al., J. Org. Chem. 83(2018) 13335-13343;
      (c) S.H. Hao, L.X. Li, D.Q. Dong, Z.L. Wang, Chin. J. Catal. 38(2017) 1664-1667;
      (d) J. Ren, X. Yan, X. Cui, et al., Green Chem. 22(2020) 265-269;
      (e) S. Du, C. Pi, T. Wan, Y. Wu, X. Cui, Adv. Synth. Catal. 361(2019) 1766-1770;
      (f) P. Bao, L. Wang, H. Yue, et al., J. Org. Chem. 84(2019) 2976-2983.

    11. [11]

      (a) J.Y. Chen, Y.W. Lin, W.M. He, Chin. Chem. Lett. (2020), doi: http://dx.doi.org/10.1016/j.cclet.2020.03.034;
      (b) W.B. He, L.Q. Gao, X.J. Chen, et al., Chin. Chem. Lett. 31(2020) 1895-1898;
      (c) S. Peng, Y.W. Lin, W.M. He, Chin. J. Org. Chem. 40(2020) 541-542;
      (d) F.H. Qin, X.J. Huang, Y. Liu, et al., Chin. Chem. Lett. (2020), doi: http://dx.doi.org/10.1016/j.cclet.2020.04.042;
      (e) J.Y. Chen, H.Y. Wu, Q.W. Gui, et al., Org. Lett. 22(2020) 2206-2209.

    12. [12]

      X.Q. Mou, L. Xu, S.H. Wang, C. Yang, Tetrahedron Lett. 56(2015) 2820-2822.  doi: 10.1016/j.tetlet.2015.04.056

  • 加载中
    1. [1]

      Guang-Ming NanWei Liu . Metal-free one-pot synthesis of quinoline-2,4-carboxylates via a molecular iodine-catalyzed three-component reaction of arylamines, ethyl glyoxylate, and α-ketoesters. Chinese Chemical Letters, 2015, 26(10): 1289-1292. doi: 10.1016/j.cclet.2015.06.015

    2. [2]

      Fu Feng . Solvent-free Michael addition reaction of fluorene with chalcon. Chinese Chemical Letters, 2011, 22(1): 29-32. doi: 10.1016/j.cclet.2010.09.006

    3. [3]

      Cao ZhongZhu QinLin Ying-WuHe Wei-Min . The concept of dual roles design in clean organic preparation. Chinese Chemical Letters, 2019, 30(12): 2132-2138. doi: 10.1016/j.cclet.2019.09.041

    4. [4]

      Simin NazariMosadegh KeshavarzBahador KaramiNasir IravaniMasoumeh Vafaee-Nezhad . Imidazol-1-yl-acetic acid as a novel green bifunctional organocatalyst for the synthesis of 1, 8-dioxooctahydroxanthenes under solvent-free conditions. Chinese Chemical Letters, 2014, 25(2): 317-320.

    5. [5]

      Xue Ming Chen Xing Shu Li Albert S. C. Chan . Highly efficient synthesis of β-amino esters via Mannich-type reaction under solvent-free conditions using ZnCl2 catalyst. Chinese Chemical Letters, 2009, 20(4): 407-410. doi: 10.1016/j.cclet.2008.12.030

    6. [6]

      Javad Safaei-GhomiHossein Shahbazi-AlaviAbolfazl ZiaratiRaheleh TeymuriMohammad Reza Saberi . A highly flexible green synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives with CuI nanoparticles as catalyst under solvent-free conditions. Chinese Chemical Letters, 2014, 25(3): 401-405. doi: 10.1016/j.cclet.2013.11.046

    7. [7]

      Hamzeh KiyaniMaryam Ghiasi . Potassium phthalimide: An efficient and green organocatalyst for the synthesis of 4-aryl-7-(arylmethylene)-3, 4, 6, 7-tetrahydro-1Hcyclopenta[d]pyrimidin-2(5H)-ones/thiones under solvent-free conditions. Chinese Chemical Letters, 2014, 25(2): 313-316.

    8. [8]

      Jia Rui Wang Chu Ting Yang Lei Liu Qing Xiang Guo . Aerobic oxidation assisted by ligand-free palladium catalysts. Chinese Chemical Letters, 2007, 18(2): 133-136. doi: 10.1016/j.cclet.2006.12.005

    9. [9]

      K. F. Shelke S. B. Sapkal M. S. Shingare . Ultrasound-assisted one-pot synthesis of 2,4,5-triarylimidazole derivatives catalyzed by ceric (Ⅳ) ammonium nitrate in aqueous media. Chinese Chemical Letters, 2009, 20(3): 283-287. doi: 10.1016/j.cclet.2008.11.033

    10. [10]

      Wen-Sheng ZhangWen-Jing XuFei ZhangGui-Rong Qu . Synthesis of symmetrical 1, 3-diynes via tandem reaction of (Z)-arylvinyl bromides in the presence of DBU and CuI. Chinese Chemical Letters, 2013, 24(05): 407-410.

    11. [11]

      Yun-Xia LiYi-Lin ShengBi-Song Zhang . A novel Ireland-Claisen rearrangement/Diels-Alder tandem reaction of propargylic acrylates with acyclic dienophiles. Chinese Chemical Letters, 2013, 24(2): 137-139.

    12. [12]

      Mohammad PiltanIssa YavariLoghman Moradi . Tandem synthesis of functionalized hexaalkyl benzoisoquinolinopyrrolonaphthyridine-hexacarboxylate, via isoquinoline based multi-component reaction. Chinese Chemical Letters, 2013, 24(11): 979-983.

    13. [13]

      Hong-Rui ZhangJi-Jun XueRui ChenYu TangYing Li . A bifunctional rosin-derived thiourea catalyzed asymmetric tandem reaction and its new mechanism. Chinese Chemical Letters, 2014, 25(05): 710-714. doi: 10.1016/j.cclet.2013.12.024

    14. [14]

      Hui-Jing LiDong-Hui LuoQin-Xi WuChun-Yang DaiZhi-Lun ShenYan-Chao Wu . Bi(OTf)3-catalyzed tandem reaction of naphthols with β,γ-unsaturated α-ketoesters. Effi cient synthesis of functionalized 4H-chromenes. Chinese Chemical Letters, 2014, 25(9): 1235-1239. doi: 10.1016/j.cclet.2014.05.023

    15. [15]

      Ru-Wei ShenJian-Jun YangLi-Xiong Zhang . Facile synthesis of phthalan derivatives via a Pd-catalyzed tandem hydroalkynylation, isomerization, Diels-Alder cycloaddition and aromatization reaction. Chinese Chemical Letters, 2015, 26(1): 73-76. doi: 10.1016/j.cclet.2014.10.018

    16. [16]

      Ferydoon Khamooshi Ali Reza Modarresi-Alam . Solvent-free preparation of arylaminotetrazole derivatives using aluminum (Ⅲ) hydrogensulfate as an effective catalyst. Chinese Chemical Letters, 2010, 21(8): 892-896. doi: 10.1016/j.cclet.2010.03.008

    17. [17]

      Mahmood TajbakshMaryam FarhangHamid Reza MardaniRahman HosseinzadehYaghoub Sarrafi . Cu(Ⅱ) salen complex catalyzed synthesis of propargylamines by a three-component coupling reaction. Chinese Journal of Catalysis, 2013, 34(12): 2217-2222. doi: 10.1016/S1872-2067(12)60683-4

    18. [18]

      Jian Feng Zhou Gui Xia Gong Kun Bao Shi San Jun Zhi . Catalyst-free and solvent-free method for the synthesis of quinoxalines under microwave irradiation. Chinese Chemical Letters, 2009, 20(6): 672-675. doi: 10.1016/j.cclet.2009.02.007

    19. [19]

      Jian Feng Zhou Gui Xia Gong Hui Qin Zhu Feng Xia Zhu . Solvent-free and catalyst-free method for the synthesis of 2,4,5-triarylimidazoles under microwave irradiation. Chinese Chemical Letters, 2009, 20(10): 1198-1200. doi: 10.1016/j.cclet.2009.05.027

Metrics
  • PDF Downloads(2)
  • Abstract views(89)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return