Citation: Yu Qin, Qing Guo, Shengjie Wu, Chenlu Huang, Zhiming Zhang, Li Zhang, Linhua Zhang, Dunwan Zhu. LHRH/TAT dual peptides-conjugated polymeric vesicles for PTT enhanced chemotherapy to overcome hepatocellular carcinoma[J]. Chinese Chemical Letters, ;2020, 31(12): 3121-3126. doi: 10.1016/j.cclet.2020.06.023 shu

LHRH/TAT dual peptides-conjugated polymeric vesicles for PTT enhanced chemotherapy to overcome hepatocellular carcinoma

    * Corresponding authors.
    E-mail addresses: zhanglinhua@bme.pumc.edu.cn (L. Zhang) zhudunwan@bme.pumc.edu.cn (D. Zhu).
    1 These authors contributed equally to this work.
  • Received Date: 3 March 2020
    Revised Date: 11 June 2020
    Accepted Date: 11 June 2020
    Available Online: 15 December 2020

Figures(6)

  • Combination therapy such as photothermal therapy (PTT) enhanced chemotherapy is regarded as a promising strategy for cancer treatment. Herein, we developed redox-responsive polymeric vesicles based on the amphiphilic triblock copolymer PCL-ss-PEG-ss-PCL. To avoid the limited therapeutic effect of chemotherapeutic drugs caused by systemic exposures and drug resistance, the redox-sensitive polymeric vesicles were cargoed with two chemotherapeutics: doxorubicin (DOX) and paclitaxel (PTX). Besides, indocyanine green (ICG) was encapsulated, and cell-penetrating peptides and LHRH targeting molecule were modified on the surface of polymeric vesicles. The results indicated that the polymeric vesicles can load different kinds of drugs with high drug loading content, trigger drug release in responsive to the reductive environment, realize high cellular uptake via dual peptides and laser irradiation, and achieve higher cytotoxicity via chemo-photothermal combination therapy. Hence, the redox-responsive LHRH/TAT dual peptides-conjugated PTX/DOX/ICG co-loaded polymeric micelles exhibited great potential in tumor-targeting and chemo-photothermal therapy.
  • 加载中
    1. [1]

      J.D. Yang, P. Hainaut, G.J. Gores, et al., Nat. Rev. Gastroenterol. Hepatol. 16(2019) 589-604.

    2. [2]

      O. Veiseh, F.M. Kievit, R.G. Ellenbogen, et al., Adv. Drug Deliv. Rev. 63(2011) 582-596.  doi: 10.1016/j.addr.2011.01.010

    3. [3]

      W. Huang, L. Chen, L. Kang, et al., Adv. Drug Deliv. Rev. 115(2017) 82-97.

    4. [4]

      M.T. Piccolo, C. Menale, S. Crispi, Anticancer Agents Med. Chem.15(2015) 408-422.  doi: 10.2174/1871520615666150113123039

    5. [5]

      D.W. Zhu, S.J. Wu, C.Y. Hu, et al., Acta Biomater. 58(2017) 399-412.  doi: 10.1016/j.actbio.2017.06.017

    6. [6]

      Y. Wang, J. Wang, L. Yang, et al., Nanomedicine 21(2019) 102066.  doi: 10.1016/j.nano.2019.102066

    7. [7]

      J. Gehl, M. Boesgaard, T. Paaske, et al., Ann. Oncol. 7(1996) 687-693.  doi: 10.1093/oxfordjournals.annonc.a010717

    8. [8]

      G.S. Karagiannis, J.S. Condeelis, M.H. Oktay, Cancer Res. 79(2019) 4567-4576.  doi: 10.1158/0008-5472.CAN-19-1147

    9. [9]

      S. Luo, E. Zhang, Y. Su, et al., Biomaterials 32(2011) 7127-7138.

    10. [10]

      S. Zanganeh, R. Spitler, G. Hutter, et al., Immunotherapy 9(2017) 819-835.  doi: 10.2217/imt-2017-0041

    11. [11]

      W. Fan, B. Yung, P. Huang, et al., Chem. Rev. 117(2017) 13566-13638.

    12. [12]

      X.M. Li, Y.H. Zhang, Z.Q. Ma, et al., Chin. Chem. Lett. 30(2019) 489-493.

    13. [13]

      Z.H. Yu, Y.C. Guo, H. Dai, et al., Mater. Express 9(2019) 467-474.

    14. [14]

      X. Zhang, Y.S. Li, Y.P. Wei, et al., Mater. Express 9(2019) 808-812.

    15. [15]

      E. Rideau, R. Dimova, P. Schwille, et al., Chem. Soc. Rev. 47(2018) 8572-8610.

    16. [16]

      Y.T. Guntern, J.R. Pankhurst, J. Vávra, et al., Angew. Chem. Int. Ed. 58(2019) 12632-12639.

    17. [17]

      L. Chang, Y. Liu, C. Wu, et al., J. Biomed. Nanotechnol. 14(2018) 786-794.

    18. [18]

      J. Zhuang, M. Ying, K. Spiekermann, et al., Adv. Mater. 30(2018) e1804693.

    19. [19]

      U. Kauscher, M.N. Holme, M. Björnmalm, et al., Adv. Drug Deliv. Rev.138(2019) 259-275.

    20. [20]

      R. Nahire, M.K. Haldar, S. Paul, et al., Biomaterials 35(2014) 6482-6497.

    21. [21]

      R.R. Zhang, A.B. Schroeder, J.J. Grudzinski, et al., Nat. Rev. Clin. Oncol.14(2017) 347-364.

    22. [22]

      S. Ye, F. Wang, Z. Fan, et al., ACS Appl. Mater. Interfaces 11(2019) 15262-15275.

    23. [23]

      C. Hu, F. Fan, Y. Qin, et al., J. Biomed. Nanotechnol. 14(2018) 2018-2030.

    24. [24]

      H.J. Yoon, H.S. Lee, J.Y. Lim, et al., ACS Appl. Mater. Interfaces 9(2017) 5683-5691.

    25. [25]

      X. Zheng, D. Xing, F. Zhou, et al., Mol. Pharm. 8(2011) 447-456.

    26. [26]

      N. Todorova, C. Chiappini, M. Mager, et al., Nano Lett. 14(2014) 5229-5237.

    27. [27]

      Y. Wei, T. Tang, H.B. Pang, Nat. Commun. 10(2019) 3646.

    28. [28]

      X. Li, O. Taratula, O. Taratula, et al., Mini Rev. Med. Chem. 17(2017) 258-267.

    29. [29]

      H.L. Ma, X.R. Qi, Y. Maitani, et al., Int. J. Pharm. 333(2007) 177-186.

    30. [30]

      S.P. Hadipour Moghaddam, J. Saikia, M. Yazdimamaghani, et al., ACS Appl. Mater. Interfaces 9(2017) 21133-21146.

    31. [31]

      S.P. Hadipour Moghaddam, M. Yazdimamaghani, H. Ghandehari, J. Control. Release 282(2018) 62-75.

    32. [32]

      X. He, J. Zhang, C. Li, et al., Theranostics 8(2018) 4884-4897.

    33. [33]

      L. Zhang, Y.M. Zhang, Y. Liu, et al., Chin. Chem. Lett. 30(2019) 120-122.

  • 加载中
    1. [1]

      Lei ZhouChang DuRong ZhangChangming Dong . Stimuli-responsive dual drugs-conjugated polydopamine nanoparticles for the combination photothermal-cocktail chemotherapy. Chinese Chemical Letters, 2021, 32(1): 561-564. doi: 10.1016/j.cclet.2020.02.043

    2. [2]

      Die JiaXianbin MaYi LuXinyi LiShengxin HouYuan GaoPeng XueYuejun KangZhigang Xu . ROS-responsive cyclodextrin nanoplatform for combined photodynamic therapy and chemotherapy of cancer. Chinese Chemical Letters, 2021, 32(1): 162-167. doi: 10.1016/j.cclet.2020.11.052

    3. [3]

      Xiao-Zhen CuiZhi-Guo ZhouYan YangJie WeiJun WangMing-Wei WangHong YangYing-Jian ZhangShi-Ping Yang . PEGylated WS2 nanosheets for X-ray computed tomography imaging and photothermal therapy. Chinese Chemical Letters, 2015, 26(6): 749-754. doi: 10.1016/j.cclet.2015.03.034

    4. [4]

      Yang SiqiZhou LinzhuSu YueZhang RongDong Chang-Ming . One-pot photoreduction to prepare NIR-absorbing plasmonic gold nanoparticles tethered by amphiphilic polypeptide copolymer for synergistic photothermal-chemotherapy. Chinese Chemical Letters, 2019, 30(1): 187-191. doi: 10.1016/j.cclet.2018.02.015

    5. [5]

      Chen YishaLi LiChen WeijieChen HaiyanYin Jun . Near-infrared small molecular fluorescent dyes for photothermal therapy. Chinese Chemical Letters, 2019, 30(7): 1353-1360. doi: 10.1016/j.cclet.2019.02.003

    6. [6]

      Wu RiWang HuizhenHai LuoWang TianzhengHou MinHe DinggengHe XiaoxiaoWang Kemin . A photosensitizer-loaded zinc oxide-polydopamine core-shell nanotherapeutic agent for photodynamic and photothermal synergistic therapy of cancer cells. Chinese Chemical Letters, 2020, 31(1): 189-192. doi: 10.1016/j.cclet.2019.05.004

    7. [7]

      Qiu LiangZhao LinfeiXing ChengfenZhan Yong . Redox-responsive polymer prodrug/AgNPs hybrid nanoparticles for drug delivery. Chinese Chemical Letters, 2018, 29(2): 301-304. doi: 10.1016/j.cclet.2017.09.048

    8. [8]

      Xu Tao-TaoLi Jun-HuaCheng Fu-RongZhang Yi-XinCao JunGao Wen-XiaHe Bin . Fabrication of a polypseudorotaxane nanoparticle with synergistic photodynamic and chemotherapy. Chinese Chemical Letters, 2017, 28(9): 1885-1888. doi: 10.1016/j.cclet.2017.07.029

    9. [9]

      Yan ChenxuShi LiminGuo ZhiqianZhu Weihong . Molecularly near-infrared fluorescent theranostics for in vivo tracking tumor-specific chemotherapy. Chinese Chemical Letters, 2019, 30(10): 1849-1855. doi: 10.1016/j.cclet.2019.08.038

    10. [10]

      Wang KuangYang PengGuo RanranYao XianxianYang Wuli . Photothermal performance of MFe2O4 nanoparticles. Chinese Chemical Letters, 2019, 30(12): 2013-2016. doi: 10.1016/j.cclet.2019.04.005

    11. [11]

      Chen YuxuanLi BowenChen XiaohongWu MinJi YongtaoTang GupingPing Yuan . A supramolecular co-delivery strategy for combined breast cancer treatment and metastasis prevention. Chinese Chemical Letters, 2020, 31(5): 1153-1158. doi: 10.1016/j.cclet.2019.06.022

    12. [12]

      Chen HuCheng HongweiWu WenyingLi DengfengMao JingsongChu ChengchaoLiu Gang . The blooming intersection of transcatheter hepatic artery chemoembolization and nanomedicine. Chinese Chemical Letters, 2020, 31(6): 1375-1381. doi: 10.1016/j.cclet.2020.03.024

    13. [13]

      DING Guan-Yu DU Bao-Ji HAN Xu DONG Qing LI Yun-Hui DU Yan ANG Er-Kang YANG Xiu-Yun LI Dan . Functionalized Gold Nano-stars as Chemotherapeutic Drugs Vector for Chemo-and Photothermal Synergistic Therapy of Breast Cancer. Chinese Journal of Analytical Chemistry, 2018, 46(8): 1193-1200. doi: 10.11895/j.issn.0253-3820.181146

    14. [14]

      Huang XiYin YanlongWu MinZan WangYang Qian . LyP-1 peptide-functionalized gold nanoprisms for SERRS imaging and tumor growth suppressing by PTT induced-hyperthermia. Chinese Chemical Letters, 2019, 30(6): 1335-1340. doi: 10.1016/j.cclet.2019.02.019

    15. [15]

      Ding KailiZheng CuixiaSun LinglingLiu XinxinYin YanyanWang Lei . NIR light-induced tumor phototherapy using ICG delivery system based on platelet-membrane-camouflaged hollow bismuth selenide nanoparticles. Chinese Chemical Letters, 2020, 31(5): 1168-1172. doi: 10.1016/j.cclet.2019.10.040

    16. [16]

      YANG ZhengXIE An-JianSHEN Yu-Hua . pH-Controlled Drug Release of Nitrogen Doped Carbon Dots Delivering Doxorubicine for Synergetic Photo-Thermal Therapy and Chemotherapy. Chinese Journal of Inorganic Chemistry, 2018, 34(10): 1775-1782. doi: 10.11862/CJIC.2018.236

    17. [17]

      Wang YuzhenSong YujunZhu GuixianZhang DechenLiu Xuewu . Highly biocompatible BSA-MnO2 nanoparticles as an efficient near-infrared photothermal agent for cancer therapy. Chinese Chemical Letters, 2018, 29(11): 1685-1688. doi: 10.1016/j.cclet.2017.12.004

    18. [18]

      Zhang LuZhang Ying-MingLiu GuoxingLiu Yu . Redox-responsive diphenylalanine aggregate mediated by cyclodextrin. Chinese Chemical Letters, 2019, 30(1): 120-122. doi: 10.1016/j.cclet.2018.04.028

    19. [19]

      Anman ZhangLuo HaiTianzheng WangHong ChengMan LiXiaoxiao HeKemin Wang . NIR-triggered drug delivery system based on phospholipid coated ordered mesoporous carbon for synergistic chemo-photothermal therapy of cancer cells. Chinese Chemical Letters, 2020, 31(12): 3158-3162. doi: 10.1016/j.cclet.2020.04.035

    20. [20]

      Xin-Yue HuYong ChenYu Liu . Redox-responsive supramolecular nanoparticles based on amphiphilic sulfonatocalixarene and selenocystamine dihydrochloride. Chinese Chemical Letters, 2015, 26(7): 862-866. doi: 10.1016/j.cclet.2015.01.003

Metrics
  • PDF Downloads(1)
  • Abstract views(85)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return