Citation: Li Wenhan, Guo Zhirui, Tai Qiuyuan, Li Yawen, Zhu Yefei, Bai Tingting. Rapid and fine tailoring longitudinal surface plasmon resonances of gold nanorods by end-selective oxidation[J]. Chinese Chemical Letters, ;2020, 31(9): 2447-2451. doi: 10.1016/j.cclet.2020.05.019 shu

Rapid and fine tailoring longitudinal surface plasmon resonances of gold nanorods by end-selective oxidation

    * Corresponding authors.
    E-mail addresses: zhuyf@njmu.edu.cn (Y. Zhu) baitingting@njmu.edu.cn (T. Bai).
    1 These authors contributed equally to this work.
  • Received Date: 24 March 2020
    Revised Date: 12 May 2020
    Accepted Date: 12 May 2020
    Available Online: 15 September 2020

Figures(5)

  • Facile achievement of gold nanorods (AuNRs) with controllable longitudinal surface plasmon resonance (LSPR) is of great importance for their applications in various fields. The LSPR of AuNRs is sensitive to their aspect ratio, which is still hard to be precisely tuned by direct synthesis. In this work, we report a simple approach for end-selective etching of AuNRs by a rapid oxidation process with Au(Ⅲ) in cetyltrimethylammonium bromide (CTAB) solution at a mild temperature. The LSPR wavelength and the length of AuNRs blue shifted linearly as a function of the amount of Au(Ⅲ), while the diameter of AuNRs remained nearly constant. The oxidative rate is temperature dependent, and the oxidative process for a desired LSPR can be accomplished within 15 min at 60 ℃. Further investigations indicated that Br- determine the occurrence of the oxidation between AuNRs and Au(Ⅲ), and a small amount of surfactant chain (CTA+) is crucial for stabilizing AuNRs. This method presents a quick but robust strategy for acquiring AuNRs with an arbitrary intermediate LSPR wavelength using the same starting AuNRs, and can be a powerful tool for subsequent applications.
  • 加载中
    1. [1]

      D. Zhang, S. Du, S. Su, et al., Biosens. Bioelectron. 123 (2019) 19-24.  doi: 10.1016/j.bios.2018.09.039

    2. [2]

      J.J. Shen, P.H. Zhang, F. Zheng, et al., ACS Appl. Nano Mater. 1 (2018) 2120-2128.

    3. [3]

      T. Li, J. Sun, J. Liu, et al., Chin. Chem. Lett. 31 (2020) 439-442.  doi: 10.1016/j.cclet.2019.08.051

    4. [4]

      Z. Zhang, L.M. Bragg, M.R. Servos, et al., Chin. Chem. Lett. 30 (2019) 1655-1658.  doi: 10.1016/j.cclet.2019.05.062

    5. [5]

      J. Song, L. Wang, H. Qi, et al., Chin. Chem. Lett. 30 (2019) 1643-1646.  doi: 10.1016/j.cclet.2019.05.042

    6. [6]

      S. Zeng, H. Yuan, L. Gan, et al., Chin. Chem. Lett. 30 (2019) 1266-1268.  doi: 10.1016/j.cclet.2019.01.002

    7. [7]

      C. Shang, C. Cai, C. Zhao, et al., Chin. Chem. Lett. 29 (2018) 81-83.  doi: 10.1016/j.cclet.2017.06.010

    8. [8]

      K. Zhang, T. Bai, M. Wang, et al., Nanosci. Nanotechnol. Lett. 10 (2018) 119-126.  doi: 10.1166/nnl.2018.2584

    9. [9]

      D. Yuan, H. Yan, J. Liu, et al., Chin. Chem. Lett. 31 (2020) 455-458.  doi: 10.1016/j.cclet.2019.07.067

    10. [10]

      L. Zhang, H. Su, J. Cai, et al., ACS Nano 10 (2016) 10404-10417.  doi: 10.1021/acsnano.6b06267

    11. [11]

      N.R. Jana, L. Gearheart, C.J. Murphy, J. Phys. Chem. B 105 (2001) 4065-4067.

    12. [12]

      B. Nikoobakht, M.A. El-Sayed, Chem. Mater. 15 (2003) 1957-1962.  doi: 10.1021/cm020732l

    13. [13]

      B. Nikoobakht, M.A. El-Sayed, Langmuir 17 (2001) 6368-6374.  doi: 10.1021/la010530o

    14. [14]

      H. Chen, L. Shao, Q. Li, et al., Chem. Soc. Rev. 42 (2013) 2679-2724.  doi: 10.1039/C2CS35367A

    15. [15]

      X. Ye, Y. Gao, J. Chen, et al., Nano Lett. 13 (2013) 2163-2171.  doi: 10.1021/nl400653s

    16. [16]

      L. Vigderman, E.R. Zubarev, Chem. Mater. 25 (2013) 1450-1457.  doi: 10.1021/cm303661d

    17. [17]

      L. Gou, C.J. Murphy, Chem. Mater. 17 (2005) 3668-3672.  doi: 10.1021/cm050525w

    18. [18]

      K.C. Ng, W. Cheng, Nanotechnology 23 (2012) 105602.

    19. [19]

      W. Ni, X. Kou, Z. Yang, et al., ACS Nano 2 (2008) 677-686.  doi: 10.1021/nn7003603

    20. [20]

      J. Rodríguez-Fernández, J. Pérez-Juste, P. Mulvaney, et al., J. Phys. Chem. B 109 (2005) 14257-14261.  doi: 10.1021/jp052516g

    21. [21]

      C.K. Tsung, X. Kou, Q. Shi, et al., J. Am. Chem. Soc. 128 (2006) 5352-5353.  doi: 10.1021/ja060447t

    22. [22]

      R. Zou, X. Guo, J. Yang, et al., CrystEngComm 11 (2009) 2797-2803.  doi: 10.1039/b911902g

    23. [23]

      B. Zhang, Y. Xia, Chin. Chem. Lett. 30 (2019) 1663-1666.  doi: 10.1016/j.cclet.2019.06.038

    24. [24]

      H. Chen, X. Kou, Z. Yang, et al., Langmuir 24 (2008) 5233-5237.  doi: 10.1021/la800305j

    25. [25]

      T. Bai, Y. Tan, J. Zou, et al., J. Phys. Chem. C 119 (2015) 28597-28604.  doi: 10.1021/acs.jpcc.5b10095

    26. [26]

      L. Wang, X. Jiang, Y. Ji, et al., Nanoscale 5 (2013) 8384-8391.  doi: 10.1039/c3nr01626a

    27. [27]

      P. Wang, X. Wang, L. Wang, et al., Sci. Technol. Adv. Mater. 16 (2015) 034610.

  • 加载中
    1. [1]

      Hong-Qi ChenJuan XuFei YuanYong WuYi-Yan ZhangLun Wang . A “turn-off” luminescence resonance energy transfer aptamer sensor based on near-infrared upconverting NaYF4:Yb3+,Tm3+ nanoparticles as donors and gold nanorods as acceptors. Chinese Chemical Letters, 2013, 24(01): 79-81.

    2. [2]

      Zhang BingjieXia Yunsheng . Etching of gold nanorods: The effects of diameter on analytical performances. Chinese Chemical Letters, 2019, 30(9): 1663-1666. doi: 10.1016/j.cclet.2019.06.038

    3. [3]

      HU Xue-Jiao GAO Guan-Bin ZHANG Ming-Xi . Gold Nanorods——from Controlled Synthesis and Modification to Nano-Biological and Biomedical Applications. Acta Physico-Chimica Sinica, 2017, 33(7): 1324-1337. doi: 10.3866/PKU.WHXB201704112

    4. [4]

      Yin LingWang AnnaZhao MengSha JingquanBai YongxiangShi Haibin . Preparation of A Novel Smart Gold Nanorod Probe and Its Application in Cancer Cell Imaging. Chemistry, 2019, 82(1): 44-50.

    5. [5]

      Li Hua CHEN . Improvement of the Specificity of Surface Plasmon Resonance with BSA-modified Chip. Chinese Chemical Letters, 2006, 17(12): 1619-1622.

    6. [6]

      Cai LiDu YuanchangGuan XiangjiuShen Shaohua . CdS nanocrystallites sensitized ZnO nanorods with plasmon enhanced photoelectrochemical performance. Chinese Chemical Letters, 2019, 30(12): 2363-2367. doi: 10.1016/j.cclet.2019.07.020

    7. [7]

      Sun GuanghuiJin YuekangWang ZhengmingXu HongChai PengHuang Weixin . Site-and surface species-dependent propylene oxidation with molecular oxygen on gold surface. Chinese Chemical Letters, 2018, 29(12): 1883-1887. doi: 10.1016/j.cclet.2018.10.027

    8. [8]

      Yang WangTian-Xin Wei . Surface plasmon resonance sensor chips for the recognition of bovine serum albumin via electropolymerized molecularly imprinted polymers. Chinese Chemical Letters, 2013, 24(9): 813-816.

    9. [9]

      Yuan TanIsrar AhmadTian-Xin Wei . Detection of parathion methyl using a surface plasmon resonance sensor combined with molecularly imprinted films. Chinese Chemical Letters, 2015, 26(6): 797-800. doi: 10.1016/j.cclet.2015.04.001

    10. [10]

      Jun ChenJi-Ying XuYi Chen . Interaction of straight chain alcohol vapors with self-assembled MOF film by surface plasmon resonance sensing and imaging. Chinese Chemical Letters, 2013, 24(07): 651-653.

    11. [11]

      Hong Xia Hao Hong Zhou Jing Chang Jun Zhu Tian Xin Wei . Molecularly imprinted polymers for highly sensitive detection of morphine using surface plasmon resonance spectroscopy. Chinese Chemical Letters, 2011, 22(4): 477-480. doi: 10.1016/j.cclet.2010.11.004

    12. [12]

      Yuan DanYan HuihongLiu JiahuiLiu JiajunLi ChunmeiWang Jian . A fast and colorimetric sensor array for the discrimination of ribonucleotides in human urine samples by gold nanorods. Chinese Chemical Letters, 2020, 31(2): 455-458. doi: 10.1016/j.cclet.2019.07.067

    13. [13]

      Jian Quan Lu Ming Bo Xu Xing Wang Zhou Jin Guang Xu Qing Tao . A novel detection of single-stranded DNA binding protein based on ss-DNA modified chip using surface plasmon resonance microscopy. Chinese Chemical Letters, 2007, 18(4): 441-444. doi: 10.1016/j.cclet.2007.01.012

    14. [14]

      Na WANG Ruo YUAN Ya Qin CHAI Dian Ping TANG Qiang ZHU Xue Lian LI . Electrocatalytic Oxidation of NADH Based on Self-assembled Colloidal Gold and Nafion Matrixes and Co Complex Mediator. Chinese Chemical Letters, 2006, 17(5): 683-686.

    15. [15]

      Xin Qiu Li Chuan Tang Chao Qing Dong Ji Cun Ren . Characterization of gold nanoparticle bioconjugation by resonance light scattering correlation spectroscopy. Chinese Chemical Letters, 2010, 21(10): 1227-1230. doi: 10.1016/j.cclet.2010.05.007

    16. [16]

      Qiang WANG Zheng Ting CAI Da Cheng FENG . Theoretical Study of the Scattering Resonance State, Reaction Mechanism and Partial Potential Energy Surface of the F+CH4→HF +CH3 Reaction. Chinese Chemical Letters, 2006, 17(2): 281-284.

    17. [17]

      Lei ChenBin-Dong LiQiu-Xia XuDa-Bin Liu . A silica gel supported cobalt(Ⅱ) Schiff base complex as efficient and recyclable heterogeneous catalyst for the selective aerobic oxidation of alkyl aromatics. Chinese Chemical Letters, 2013, 24(9): 849-852.

    18. [18]

      Gang XIA Xiao Ya HU Cheng Yin WANG Gen Di JIN Rong GUO . Preparation of Nanoelectrode Ensembles by Assembly of Nano-Silver Colloid on Gold Surface. Chinese Chemical Letters, 2002, 13(2): 159-162.

    19. [19]

      Rui-Wen YanBao-Kang Jin . Study of the electrochemical oxidation mechanism of formaldehyde on gold electrode in alkaline solution. Chinese Chemical Letters, 2013, 24(2): 159-162.

Metrics
  • PDF Downloads(1)
  • Abstract views(37)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return