Citation: Wang Miao, Zhou Lei, Hou Yaqi, He Wen, Liu Wei, Wu Feng, Hou Xu. Dynamic and reversible electrowetting with low voltage on the dimethicone infused carbon nanotube array in air[J]. Chinese Chemical Letters, ;2020, 31(7): 1914-1918. doi: 10.1016/j.cclet.2020.04.059 shu

Dynamic and reversible electrowetting with low voltage on the dimethicone infused carbon nanotube array in air

    *Corresponding author.Research Institute for Biomimetics and Soft Matter,Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, College of Physical Science and Technology, Xiamen University,Xiamen 361005, China
    E-mail address: houx@xmu.edu.cn (X. Hou).
    1 These authors contributed equally to this work.
  • Received Date: 8 April 2020
    Revised Date: 28 April 2020
    Accepted Date: 30 April 2020
    Available Online: 8 May 2020

Figures(4)

  • Unremitting efforts have been intensively making for pursuing the goal of the reversible transition of electrowetting owing to its vital importance to many practical applications, but which remains a major challenge for carbon nanotubes due to the irreversible electrochemical damage. Herein, we proposed a subtly method to prevent the CNT array from electrochemical damage by using liquid medium instead of air medium to form a liquid/liquid/solid triphase system. The dimethicone dynamically refills in CNT arrays after removing of voltage that makes the surface back to hydrophobic, which is an elegant way to not only decrease energy dissipation in electrowetting process but also obtain extra energy in reversible dewetting process. Repeated cycles of in situ experiments showed that more than four reversible electrowetting cycles could be achieved in air. It worth mention that the in situ reversible electrowetting voltage of the dimethicone infused CNT array has been lowered to 2 V from 7 V which is the electrowetting voltage for the pure CNT array. The surface of the dimethicone infused CNT array can maintain hydrophobicity with a contact angle of 145.6° after four cycles, compared with 148.1° of the initial state. Moreover, a novel perspective of theoretical simulations through the binding energy has been provided which proved that the charged CNTs preferred binding with water molecules thereby replacing the dimethicone molecules adsorbed on the CNTs, whereas reconnected with dimethicone after removing the charges. Our study provides distinct insight into dynamic reversible electrowetting on the nanostructured surface in air and supplies a way for precise control of wettability in surface chemistry, smart phase-change heat transfer enhancement, liquid lenses, microfluidics, and other chemical engineering applications.
  • 加载中
    1. [1]

      M. Liu, L. Jiang, Adv. Funct. Mater. 20(2010) 3753-3764.
       

    2. [2]

      U.N. Tohgha, E.L. Alvino, C.C. Jarnagin, S.T. Iacono, N.P. Godman, ACS Appl. Mater. Interfaces 11(2019) 28487-28498.

    3. [3]

      P. Tao, W. Shang, C. Song, et al., Adv Mater. 27(2015) 428-463.
       

    4. [4]

      D.J. Preston, D.L. Mafra, N. Miljkovic, J. Kong, E.N. Wang, Nano Lett. 15(2015) 2902-2909.
       

    5. [5]

      B. Mondal, M. Mac Giolla Eain, Q. Xu, et al., ACS Appl. Mater. Interfaces 7(2015) 23575-23588.  doi: 10.1021/acsami.5b06759

    6. [6]

      H. Seo, H.D. Yun, S.Y. Kwon, I.C. Bang, Nano Lett. 16(2016) 932-938.
       

    7. [7]

      C. Yang, C. Chang, C. Song, et al., Appl. Therm. Eng. 95(2016) 445-453.
       

    8. [8]

      G. Zhang, Y.T. Xu, Z. Duan, et al., Appl. Surf. Sci. 454(2018) 262-269.
       

    9. [9]

      J.Q. Wang, H.Y. Wang, X.Y. Li, Y.L. Zi, Nano Energy 66(2019) 104140.
       

    10. [10]

      L.Y. Li, R.Y. Yuan, J.H. Wang, L. Li, Q.H. Wang, Sci. Rep. 9(2019) 13062-13068.
       

    11. [11]

      J. Lee, Y. Park, S.K. Chung, Sens. Actuators A -Phys. 287(2019) 177-184.

    12. [12]

      S.L. Li, Z.Q. Nie, Y.T. Tian, C. Liu, Micromachines 10(2019) 515-523.
       

    13. [13]

      W. Cui, H. Ma, B. Tian, Y. Ji, F. Su, J. Mater. Sci. 51(2016) 4031-4036.
       

    14. [14]

      Z. Wang, Y. Ou, T.M. Lu, N. Koratkar, J. Phys. Chem. B 111(2007) 4296-4299.
       

    15. [15]

      Tian D.L., He L.L., Jiang L.. Electric-responsive superwetting surface, in:A. Hozumi, L. Jiang, H. Lee, M. Shimomura[J]. Stimuli-Responsive Dewetting/Wetting Smart Surfaces and Interfaces, Springer, Berlin, 2018,pp:107-132.  

    16. [16]

      B.A. Kakade, Nanoscale 5(2013) 7011-7016.
       

    17. [17]

      M.E. Kavousanakis, N.T. Chamakos, K. Ellinas, et al., Langmuir 34(2018) 4173-4179.  doi: 10.1163/156856108X295347

    18. [18]

      J. Heikenfeld, M. Dhindsa, J. Adhes. Sci. Technol. 22(2008) 319-334.

    19. [19]

      S. Zhou, J. Sheng, Z. Yang, X. Zhang, J. Mater. Chem. A 6(2018) 8763-8771.
       

    20. [20]

      J. Sheng, Q. Zhu, X. Zeng, Z. Yang, X. Zhang, ACS Appl. Mater. Interfaces 9(2017) 11009-11015.
       

    21. [21]

      J.Y. Li, X.J. Gong, H.J. Lu, et al., Proc. Natl. Acad. Sci. 104(2007) 3687-3692.
       

    22. [22]

      Z.K. Wang, L.J. Ci, L. Chen, et al., Nano Lett. 7(2007) 697-702.
       

    23. [23]

      A.I. Aria, M. Gharib, J. Vis. Exp. 74(2013) e50378-e50386.

    24. [24]

      T.N. Krupenkin, J.A. Taylor, E.N. Wang, et al., Langmuir 23(2007) 9128-9133.  doi: 10.1021/la7008557

    25. [25]

      J.B. Boreyko, C.H. Chen, Phys. Rev. Lett. 103(2009) 174502.
       

    26. [26]

      C. Lee, C.J. Kim, Phys. Rev. Lett. 106(2011) 014502.
       

    27. [27]

      K. Carpenter, V. Bahadur, Langmuir 31(2015) 2243-2248.
       

    28. [28]

      A. Staicu, F. Mugele, Phys. Rev. Lett. 97(2006) 167801.

    29. [29]

      C. Hao, Y. Liu, X. Chen, et al., Sci. Rep. 4(2014) 6846-6852.
       

    30. [30]

      S. Kim, A.A. Polycarpou, H. Liang, Appl. Surf. Sci. 351(2015) 460-465.  doi: 10.1159/000369557

    31. [31]

      J. Yang, Z. Zhang, X. Men, X. Xu, X. Zhu, Carbon 49(2011) 19-23.
       

    32. [32]

      H.Z. Wang, Z.P. Huang, Q.J. Cai, et al., Carbon 48(2010) 868-875.
       

    33. [33]

      J. Li, J. Ling, L. Yan, et al., Surf. Coat. Technol. 258(2014) 142-145.
       

    34. [34]

      Y. Mo, D. Yan, F. Huang, Appl. Phys. A 114(2013) 1387-1392.

    35. [35]

      J. Debgupta, B.A. Kakade, V.K. Pillai, Phys. Chem. Chem. Phys. 13(2011) 14668-14674.
       

    36. [36]

      M.S. Dhindsa, N.R. Smith, J. Heikenfeld, et al., Langmuir 22(2006) 9030-9034.

    37. [37]

      X. He, W. Qiang, C. Du, et al., J. Mater. Chem. A 5(2017) 19159-19167.  doi: 10.1016/j.actbio.2011.01.016

    38. [38]

      N. Vogel, R.A. Belisle, B. Hatton, T.S. Wong, J. Aizenberg, Nat. Commun. 4(2013) 2176-2185.  doi: 10.1038/ncomms3176

    39. [39]

      P. Kim, M.J. Kreder, J. Alvarenga, J. Aizenberg, Nano Lett. 13(2013) 1793-1799.  doi: 10.1021/nl4003969

    40. [40]

      A.G. Papathanasiou, Curr. Opin. Colloid Interface Sci. 36(2018) 70-77.  doi: 10.1016/j.cocis.2018.01.008

    41. [41]

      S. Plimpton, J. Comput. Phys. 117(1995) 1-19.  doi: 10.1006/jcph.1995.1039

    42. [42]

      S.J. Weiner, P.A. Kollman, D.A. Case, et al., J. Am. Chem. Soc.106(1984) 765-784.  doi: 10.1021/ja00315a051

    43. [43]

      S. Izadi, A.V. Onufriev, J. Chem. Phys. 145(2016) 074501.

    44. [44]

      A.L. Frischknecht, J.G. Curro, Macromolecules 36(2003) 2122-2129.  doi: 10.1021/ma025763g

  • 加载中
    1. [1]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    2. [2]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

    3. [3]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    4. [4]

      Hang Meng Bicheng Zhu Ruolun Sun Zixuan Liu Shaowen Cao Kan Zhang Jiaguo Yu Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410

    5. [5]

      Fengyao CuiQiaona ZhangTangxin XiaoZhouyu WangLeyong Wang . Reversible phosphorescence in pseudopolyrotaxane elastomer. Chinese Chemical Letters, 2024, 35(10): 110061-. doi: 10.1016/j.cclet.2024.110061

    6. [6]

      Zhiwen Li Jingjing Zhang Gao Li . Dynamic assembly of chiral golden knots. Chinese Journal of Structural Chemistry, 2024, 43(7): 100300-100300. doi: 10.1016/j.cjsc.2024.100300

    7. [7]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    8. [8]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    9. [9]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    10. [10]

      Zhuo LiPeng YuDi ShenXinxin ZhangZhijian LiangBaoluo WangLei Wang . Low-loading Pt anchored on molybdenum carbide-based polyhedral carbon skeleton for enhancing pH-universal hydrogen production. Chinese Chemical Letters, 2025, 36(4): 109713-. doi: 10.1016/j.cclet.2024.109713

    11. [11]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    12. [12]

      Guoxing LiuYixin LiChangming TianYongmei XiaoLijie LiuZhanqi CaoSong JiangXin ZhengCaoyuan NiuYun-Lai RenLiangru YangXianfu ZhengYong Chen . Highly reversible photomodulated hydrosoluble stiff-stilbene supramolecular luminophor induced by cucurbituril. Chinese Chemical Letters, 2024, 35(8): 109403-. doi: 10.1016/j.cclet.2023.109403

    13. [13]

      Yan WangSi-Meng ZhaiPeng LuoXi-Yan DongJia-Yin WangZhen HanShuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493

    14. [14]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    15. [15]

      Lishan XiongXinyuan LiXiaojie LuZhendong ZhangYan ZhangWen WuChenhui Wang . Inhaled multilevel size-tunable, charge-reversible and mucus-traversing composite microspheres as trojan horse: Enhancing lung deposition and tumor penetration. Chinese Chemical Letters, 2024, 35(9): 109384-. doi: 10.1016/j.cclet.2023.109384

    16. [16]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    17. [17]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    18. [18]

      Hang ChenChengzhi CuiHebo YeHanxun ZouLei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145

    19. [19]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    20. [20]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

Metrics
  • PDF Downloads(4)
  • Abstract views(805)
  • HTML views(90)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return