A review of ARGs in WWTPs: Sources, stressors and elimination
-
* Corresponding authors.
E-mail addresses: weill333@163.com (L. Wei), zhql1962@163.com (Q. Zhao).
Citation:
Qin Kena, Wei Liangliang, Li Jianju, Lai Bo, Zhu Fengyi, Yu Hang, Zhao Qingliang, Wang Kun. A review of ARGs in WWTPs: Sources, stressors and elimination[J]. Chinese Chemical Letters,
;2020, 31(10): 2603-2613.
doi:
10.1016/j.cclet.2020.04.057
K.J. Forsberg, A. Reyes, B. Wang, E.M. Selleck, M.O. Sommer, Science 337 (2012) 1107-1111.
doi: 10.1126/science.1220761
CDC, Antibiotic Resistance Threats in the United States, 2013, U.S. Department of Health and Human Services, CDC, Atlanta, GA, 2013.
J.M. Blair, M.A. Webber, A.J. Baylay, D.O. Ogbolu, L.J. Piddock, Nat. Rev. Microbiol. 13 (2015) 42-51.
doi: 10.1038/nrmicro3380
W. Xue, F. Li, Q. Zhou, Bioresour. Technol. 289 (2019) 121632.
doi: 10.1016/j.biortech.2019.121632
J. O'Neill, Rev. Antimicrob. Resist. 20 (2014) 1-16.
https://www.who.int/news-room/fact-sheets/detail/antimicrobialresistance.
Q. Zhang, G. Tian, R. Jin, Appl. Microbiol. Biot. 102 (2018) 8261-8274.
doi: 10.1007/s00253-018-9235-7
J.L. Martinez, Environ. Pollut. 157 (2009) 2893-2902.
doi: 10.1016/j.envpol.2009.05.051
Y. Zhang, A. Li, T. Dai, et al., Environ. Sci. Technol. 52 (2017) 248-257.
P. Dong, H. Wang, T. Fang, Y. Wang, Q. Ye, Environ. Int. 125 (2019) 90-96.
doi: 10.1016/j.envint.2019.01.050
T.U. Berendonk, C.M. Manaia, C. Merlin, et al., Nat. Rev. Microbiol. 13 (2015) 310-317.
doi: 10.1038/nrmicro3439
C. Pal, J. Bengtsson-Palme, E. Kristiansson, D.J. Larsson, BMC Genomics 16 (2015) 964.
doi: 10.1186/s12864-015-2153-5
N. Devarajan, A. Laffite, N.D. Graham, et al., Environ. Sci. Technol. 49 (2015) 6528-6537.
doi: 10.1021/acs.est.5b01031
T.Jäger, N. Hembach, C. Elpers, et al., Front. Microbiol. 9 (2018)e120871.
W.H. Gaze, S.M. Krone, D.G.J. Larsson, et al., Emerg. Infect. Dis. 19 (2013) e120871.
N.J. Ashbolt, A. Amezquita, T. Backhaus, et al., Environ. Health Perspect. 121 (2013) 993-1001.
doi: 10.1289/ehp.1206316
C. Rutgersson, J. Fick, N. Marathe, et al., Environ. Sci. Technol. 48 (2014) 7825-7832.
doi: 10.1021/es501452a
X. Guo, Z. Yan, Y. Zhang, et al., Sci. Total Environ. 612 (2018) 119-128.
doi: 10.1016/j.scitotenv.2017.08.229
Y. Liang, Y. Li, J. Zhao, et al., J. Pain Res. 10 (2017) 951-964.
doi: 10.2147/JPR.S132808
C. Chen, J. Am. Soc. Inf. Sci. Technol. 57 (2006) 359-377.
doi: 10.1002/asi.20317
M. Qiao, G. Ying, A.C. Singer, Y. Zhu, Environ. Int. 110 (2018) 160-172.
doi: 10.1016/j.envint.2017.10.016
L. Wei, K. Qin, N. Zhao, et al., J. Environ. Sci.-China 51 (2017) 173-180.
doi: 10.1016/j.jes.2016.08.004
F. Zhu, Y. Lv, J. Li, et al., Chemosphere 252 (2020) 577-588.
B. Chen, L. Hao, X. Guo, N. Wang, B. Ye, Environ. Sci. Pollut. Res. 22 (2015) 13950-13959.
doi: 10.1007/s11356-015-4636-y
W. Ben, J. Wang, X. Pan, Z. Qiang, Chemosphere 167 (2017) 262-268.
doi: 10.1016/j.chemosphere.2016.10.013
F. Yang, K. Zhang, S. Zhi, et al., Sci. Total Environ. 651 (2019) 2507-2513.
doi: 10.1016/j.scitotenv.2018.10.144
Q. Sui, J. Zhang, M. Chen, et al., Environ. Pollut. 213 (2016) 751-759.
doi: 10.1016/j.envpol.2016.03.038
M. Liu, Y. Zhang, M. Yang, et al., Environ. Sci. Technol. 46 (2012) 7551-7557.
doi: 10.1021/es301145m
J.J. Gonzalez-Plaza, K. Blau, M. Milakovic, et al., Environ. Int. 130 (2019) 104735.
doi: 10.1016/j.envint.2019.04.007
W. Zhai, F. Yang, D. Mao, Y. Luo, Environ. Sci. Pollut. Res. 23 (2016) 12030-12038.
doi: 10.1007/s11356-016-6350-9
E. Szekeres, A. Baricz, C.M. Chiriac, et al., Environ. Pollut. 225 (2017) 304-315.
doi: 10.1016/j.envpol.2017.01.054
C. Li, J. Lu, J. Liu, et al., Environ. Sci. Pollut. Res. 23 (2016) 15111-15121.
doi: 10.1007/s11356-016-6688-z
Q. Wang, P. Wang, Q. Yang, Sci. Total Environ. 621 (2018) 990-999.
doi: 10.1016/j.scitotenv.2017.10.128
J. Li, W. Cheng, L. Xu, P.J. Strong, H. Chen, Environ. Sci. Pollut. Res. 22 (2015) 4587-4596.
doi: 10.1007/s11356-014-3665-2
R. Aali, M. Nikaeen, H. Khanahmad, et al., Fresen. Environ. Bull. 23 (2014) 2560-2566.
E. Garner, R. Benitez, E. von Wagoner, et al., Water Res. 123 (2017) 144-152.
doi: 10.1016/j.watres.2017.06.046
S. Caucci, A. Karkman, D. Cacace, et al., FEMS Microbiol. Ecol. 92 (2016) fiw060.
doi: 10.1093/femsec/fiw060
W. Sim, J. Lee, E. Lee, et al., Chemosphere 82 (2011) 179-186.
doi: 10.1016/j.chemosphere.2010.10.026
J.A. Pempek, E. Holder, K.L. Proudfoot, M. Masterson, G. Habing, J. Dairy Sci. 101 (2018) 4473-4478.
doi: 10.3168/jds.2017-14055
Q. Zhang, G. Ying, C. Pan, Y. Liu, J. Zhao, Environ. Sci. Technol. 49 (2015) 6772-6782.
doi: 10.1021/acs.est.5b00729
K. Liu, J. Han, S. Li, et al., Ecotox. Environ. Safe. 172 (2019) 451-459.
doi: 10.1016/j.ecoenv.2019.01.109
L. He, Y. Liu, H. Su, et al., Environ. Sci. Technol. 48 (2014) 13120-13129.
doi: 10.1021/es5041267
L. Zhou, G. Ying, R. Zhang, et al., Environ. Sci.-Proc. Imp. 15 (2013) 802-813.
Q.Q. Zhang, G.G. Ying, C.G. Pan, Y.S. Liu, J.L. Zhao, Environ. Sci. Technol. 49 (2015) 6772-6782.
doi: 10.1021/acs.est.5b00729
P. Gao, D. Mao, Y. Luo, et al., Water Res. 46 (2012) 2355-2364.
doi: 10.1016/j.watres.2012.02.004
S. Rong, Y. Sun, Z. Zhao, Chin. Chem. Lett. 25 (2014) 187-192.
doi: 10.1016/j.cclet.2013.11.003
F.A. Khan, B. Soderquist, J. Jass, Front. Microbiol. 10 (2019) 688.
doi: 10.3389/fmicb.2019.00688
Y. Zhang, C. Zhang, D.B. Parker, et al., Sci. Total Environ. 463 (2013) 631-638.
J. Liu, Z. Zhao, J.J. Avillan, et al., Environ. Pollut. (2019) 113058.
J.P. Brooks, A. Adeli, M.R. McLaughlin, Water Res. 57 (2014) 96-103.
doi: 10.1016/j.watres.2014.03.017
W. Cheng, H. Chen, C. Su, S. Yan, Environ. Int. 61 (2013) 1-7.
doi: 10.1016/j.envint.2013.08.023
F. Yang, K. Zhang, S. Zhi, et al., Sci. Total Environ. 651 (2019) 2507-2513.
doi: 10.1016/j.scitotenv.2018.10.144
Y.M. Awad, S. Kim, S.A.A. El-Azeem, et al., Environ. Earth Sci. 71 (2014) 1433-1440.
doi: 10.1007/s12665-013-2548-z
N. Peak, C.W. Knapp, R.K. Yang, et al., Environ. Microbiol. 9 (2007) 143-151.
doi: 10.1111/j.1462-2920.2006.01123.x
Q. Sui, J. Zhang, J. Tong, M. Chen, Y. Wei, Environ. Sci. Pollut. Res. 24 (2017) 9048-9057.
doi: 10.1007/s11356-015-5891-7
C.A. Biggs, O.I. Olaleye, L.F. Jeanmeure, et al., Environ. Technol. 32 (2011) 133-144.
doi: 10.1080/09593330.2010.490852
Y.M. Awad, S. Kim, S.A.M. Abd El-Azeem, et al., Environ. Earth Sci. 71 (2014) 1433-1440.
doi: 10.1007/s12665-013-2548-z
W.Y. Xie, Q. Shen, F. Zhao, Eur. J. Soil Sci. 69 (2018) 181-195.
doi: 10.1111/ejss.12494
S. Shao, Y. Hu, J. Cheng, Y. Chen, Crit. Rev. Biotechnol. 38 (2018) 1195-1208.
doi: 10.1080/07388551.2018.1471038
E. Kristiansson, J. Fick, A. Janzon, et al., PLoS One 6 (2011) e17038.
doi: 10.1371/journal.pone.0017038
J. Huang, H. Hu, S. Lu, et al., Environ. Int. 42 (2012) 31-36.
doi: 10.1016/j.envint.2011.03.001
S. Zheng, C. Cui, Q. Liang, X. Xia, F. Yang, Chemosphere 81 (2010) 1159-1163.
doi: 10.1016/j.chemosphere.2010.08.058
X. Guo, Z. Yan, Y. Zhang, et al., Sci. Total Environ. 612 (2018) 119-128.
doi: 10.1016/j.scitotenv.2017.08.229
N. Guo, Y. Wang, T. Tong, S. Wang, Water Res. 133 (2018) 79-86.
doi: 10.1016/j.watres.2018.01.020
L. Meng, X. Li, X. Wang, et al., J. Environ. Sci.-China 61 (2017) 110-117.
doi: 10.1016/j.jes.2017.09.020
S. Cheng, Y. Lee, C. Kuo, T. Wu, Int. Biodeter. Biodegr. 102 (2015) 398-401.
doi: 10.1016/j.ibiod.2015.04.018
B. Wang, G. Li, C. Cai, J. Zhang, H. Liu, Sci. TotalEnviron. 636 (2018) 1463-1469.
J. Li, W. Cheng, L. Xu, P.J. Strong, H. Chen, Environ. Sci. Pollut. Res. 22 (2015) 4587-4596.
doi: 10.1007/s11356-014-3665-2
Q. Wang, P. Wang, Q. Yang, Sci. Total Environ. 621 (2018) 990-999.
doi: 10.1016/j.scitotenv.2017.10.128
J. He, A. Hu, M. Chen, Y. Hu, C. Yu, Microbiology/Weishengwuxue Tongbao 39 (2012) 683-695.
E. Buelow, J.R. Bayjanov, E. Majoor, et al., FEMS Microbiol. Ecol. 94 (2018) fiy087.
S. Harris, C. Morris, D. Morris, M. Cormican, E. Cummins, Sci. Total Environ. 468-469 (2014) 1078-1085.
T. Chonova, J. Labanowski, A. Bouchez, Contribution of Hospital Effluents to the Load of Micropollutants in WWTP Influents, Springer, Cham, Ferrara, 2017, pp. 135-152.
K.P. Scott, C.M. Melville, T.M. Barbosa, H.J. Flint, Antimicrob. Agents Chemother. 44 (2000) 775-777.
doi: 10.1128/AAC.44.3.775-777.2000
S. Rodriguez-Mozaz, S. Chamorro, E. Marti, et al., Water Res. 69 (2015) 234-242.
doi: 10.1016/j.watres.2014.11.021
E. Meyer, P. Gastmeier, M. Deja, F. Schwab, Int. J. Med. Microbiol. 303 (2013) 388-395.
doi: 10.1016/j.ijmm.2013.04.004
J.P. Bound, N. Voulvoulis, Environ. Health Persp. 113 (2005) 1705-1711.
doi: 10.1289/ehp.8315
R. Wise, J. Antimicrob. Chemoth. 49 (2002) 585-586.
doi: 10.1093/jac/49.4.585
K. Kümmerer, J. Environ. Manage. 90 (2009) 2354-2366.
doi: 10.1016/j.jenvman.2009.01.023
A. Karkman, T.T. Do, F. Walsh, M.P. Virta, TrendsMicrobiol.26 (2018) 220-228.
O. Alam, T. Deng, Int. J. Sci. Res. Sci. Technol. 1 (2015) 128-139.
E. Zohdi, M. Abbaspour, Int. J. Environ. Sci. Technol. (Tehran) 16 (2019) 1789-1806.
doi: 10.1007/s13762-018-2108-x
U. Rathnayake, H.M. Azamathulla, Sustain. Water Resour. Manag. 3 (2017) 33-40.
doi: 10.1007/s40899-017-0084-9
R. Pallares-Vega, H. Blaak, R. van der Plaats, et al., Water Res.161 (2019) 319-328.
doi: 10.1016/j.watres.2019.05.100
D. Baral, B.I. Dvorak, D. Admiraal, et al., Environ. Sci. Technol. 52 (2018) 9033-9044.
doi: 10.1021/acs.est.8b01219
A. DiCesare, E.M. Eckert, M. Rogora, G. Corno, Environ. Pollut. 226 (2017) 473-478.
doi: 10.1016/j.envpol.2017.04.036
D. Baral, B.I. Dvorak, D. Admiraal, et al., Environ. Sci. Technol. 52 (2018) 9033-9044.
doi: 10.1021/acs.est.8b01219
S.R. Joy, S.L. Bartelt-Hunt, D.D. Snow, et al., Environ. Sci. Technol. 47 (2013) 12081-12088.
doi: 10.1021/es4026358
B. Davis, G. Birch, Environ. Pollut. 158 (2010) 2541-2545.
doi: 10.1016/j.envpol.2010.05.021
E. Garner, R. Benitez, E. von Wagoner, et al., Water Res. 123 (2017) 144-152.
doi: 10.1016/j.watres.2017.06.046
S. Harris, C. Morris, D. Morris, M. Cormican, E. Cummins, Sci. Total Environ. 468-469 (2014) 1078-1085.
L. Sörme, R. Lagerkvist, Sci. Total Environ. 298 (2002) 131-145.
doi: 10.1016/S0048-9697(02)00197-3
D. Kang, L. Li, X.C. Wang, J. Du, Investigation of Cu, Zn, Mn, Cr, Hg and As migration in domestic wastewater treatment plant, 2010 International Conference on Mechanic Automation & Control Engineering, Wuhan, 2010.
L.P. Padhye, C.H. Huang, Proc. Water Environ. Feder. 2012 (2012) 3863-3878.
doi: 10.2175/193864712811708365
W. Gwenzi, K. Musiyiwa, L. Mangori, J. Environ. Chem. Eng. 8 (2018) 102220.
J. Zheng, R. Gao, Y. Wei, et al., Environ. Pollut. 230 (2017) 648-654.
doi: 10.1016/j.envpol.2017.07.025
J. Xu, Y. Xu, H. Wang, et al., Chemosphere 119 (2015) 1379-1385.
doi: 10.1016/j.chemosphere.2014.02.040
P. Gao, M. Munir, I. Xagoraraki, Sci. Total Environ. 421-422 (2012) 173-183.
J. Shentu, K. Zhang, D. Shen, M. Wang, H. Feng, Environ. Sci. Pollut. Res. 22 (2015) 13102-13110.
doi: 10.1007/s11356-015-4099-1
Y. Luo, D. Mao, M. Rysz, et al., Environ. Sci. Technol. 44 (2010) 7220-7225.
doi: 10.1021/es100233w
D. Mao, S. Yu, M. Rysz, et al., Water Res. 85 (2015) 458-466.
doi: 10.1016/j.watres.2015.09.010
Y. Xu, J. Xu, D. Mao, Y. Luo, Environ. Pollut. 220 (2017) 900-908.
doi: 10.1016/j.envpol.2016.10.074
P. Gao, S. He, S. Huang, et al., Appl. Microbiol. Biot. 99 (2015) 3971-3980.
doi: 10.1007/s00253-015-6404-9
X. Ji, Q. Shen, F. Liu, et al., J. Hazard. Mater. 235-236 (2012) 178-185.
C.W. Knapp, S.M. Mccluskey, B.K. Singh, et al., PLoS One 6 (2011)e27300.
doi: 10.1371/journal.pone.0027300
M.V. Riquelme Breazeal, J.T. Novak, P.J. Vikesland, A. Pruden, Water Res. 47 (2013) 130-140.
doi: 10.1016/j.watres.2012.09.044
L. Rizzo, C. Manaia, C. Merlin, et al., Sci. Total Environ. 447 (2013) 345-360.
doi: 10.1016/j.scitotenv.2013.01.032
C. Rutgersson, J. Fick, N. Marathe, et al., Environ. Sci. Technol. 48 (2014) 7825-7832.
doi: 10.1021/es501452a
O. Alam, T. Deng, Int. J. Sci. Res. Sci. Technol. 1 (2015) 128-139.
A. Pruden, R. Pei, H. Storteboom, K.H. Carlson, Environ. Sci. Technol. 40 (2006) 7445-7450.
doi: 10.1021/es060413l
M.S. Smith, R.K. Yang, C.W. Knapp, et al., Appl. Environ. Microbiol. 70 (2004) 7372-7377.
doi: 10.1128/AEM.70.12.7372-7377.2004
P. Gao, M. Munir, I. Xagoraraki, Sci. Total Environ. 421 (2012) 173-183.
Q. Cai, J. Hu, Water Res. 140 (2018) 251-260.
doi: 10.1016/j.watres.2018.04.053
B. Petrie, R. Barden, B. Kasprzyk-Hordern, Water Res. 72 (2015) 3-27.
doi: 10.1016/j.watres.2014.08.053
S.E. Beekmann, K.P. Heilmann, S.S. Richter, J. García-de-Lomas, G.V. Doern, Int. J. Antimicrob. Ag. 25 (2005) 148-156.
doi: 10.1016/j.ijantimicag.2004.09.016
S.B. Levy, The Antibiotic Paradox: How Miracle Drugs Are Destroying the Miracle, Springer, Berlin, 2013.
Z. Yu, L. Gunn, P. Wall, S. Fanning, Food Microbiol. 64 (2017) 23-32.
doi: 10.1016/j.fm.2016.12.009
H. Dang, X. Zhang, L. Song, Y. Chang, G. Yang, Mar. Pollut. Bull. 52 (2006) 1494-1503.
doi: 10.1016/j.marpolbul.2006.05.011
M.J. Bonten, R. Willems, R.A. Weinstein, Lancet Infect. Dis.1 (2001) 314-325.
doi: 10.1016/S1473-3099(01)00145-1
E. Rudolph, M. Zomerdijk, K.C.A. Luyben, L. van der Wielen, Fluid Phase Equilibr. 158 (1999) 903-912.
K. Kempf, F. Schmitt, U. Bilitewski, R. Schobert, Tetrahedron 71 (2015) 5064-5068.
doi: 10.1016/j.tet.2015.05.116
B. Halling-Sørensen, G. Sengeløv, F. Ingerslev, L.B. Jensen, Arch. Environ. Con. Tox. 44 (2003) 7-16.
doi: 10.1007/s00244-002-1234-z
K. Li, A. Yediler, M. Yang, S. Schulte-Hostede, M.H. Wong, Chemosphere 72 (2008) 473-478.
doi: 10.1016/j.chemosphere.2008.02.008
Q. Zhou, M.C. Zhang, C.D. Shuang, Z.Q. Li, A.M. Li, Chin. Chem. Lett. 23 (2012) 745-748.
doi: 10.1016/j.cclet.2012.01.039
X. Guo, W. Pang, C. Dou, D. Yin, Chemosphere 175 (2017) 21-27.
doi: 10.1016/j.chemosphere.2017.01.134
D. Livermore, Nat. Rev. Microbiol. 2 (2004) 73-78.
doi: 10.1038/nrmicro798
Y. Yang, C. Xu, X. Cao, H. Lin, J. Wang, Ecotoxicology 6 (2017) 831-840.
A. Novo, S. Andre, P. Viana, O.C. Nunes, C.M. Manaia, Water Res. 47 (2013) 1875-1887.
doi: 10.1016/j.watres.2013.01.010
M.S. Wright, G.L. Peltier, R. Stepanauskas, J.V. McArthur, FEMS Microbiol.Ecol. 58 (2006) 293-302.
doi: 10.1111/j.1574-6941.2006.00154.x
C. Baker-Austin, M.S. Wright, R. Stepanauskas, J.V. McArthur, Trends Microbiol. 14 (2006) 176-182.
doi: 10.1016/j.tim.2006.02.006
X. Ma, N. Guo, S. Ren, S. Wang, Y. Wang, Environ. Int. 126 (2019) 127-133.
doi: 10.1016/j.envint.2019.02.002
H. Hasman, F.M. Aarestrup, Antimicrob. Agents Chemother. 46 (2002) 1410-1416.
doi: 10.1128/AAC.46.5.1410-1416.2002
C. Bednorz, K. Oelgeschläger, B. Kinnemann, et al., Int. J. Med. Microbiol. 303 (2013) 396-403.
doi: 10.1016/j.ijmm.2013.06.004
S. Börjesson, A. Mattsson, P.E. Lindgren, J. Water Health 8 (2010) 247-256.
doi: 10.2166/wh.2009.159
M. Guo, Q. Yuan, J. Yang, Chemosphere 93 (2013) 2864-2868.
doi: 10.1016/j.chemosphere.2013.08.068
C.A. Engemann, L. Adams, C.W. Knapp, D.W. Graham, FEMS Microbiol. Lett. 263 (2006) 176-182.
doi: 10.1111/j.1574-6968.2006.00419.x
Q.B. Yuan, M.T. Guo, J. Yang, PLoS One 10 (2015) e119403.
Y. Zhang, Y. Zhuang, J. Geng, et al., Sci. Total Environ. 512-513 (2015) 125-132.
Y. Zhang, Y. Zhuang, J. Geng, et al., Sci. Total Environ. 550 (2016) 184-191.
doi: 10.1016/j.scitotenv.2016.01.078
N. Li, G.P. Sheng, Y.Z. Lu, R.J. Zeng, H.Q. Yu, Water Res. 111 (2017) 204-212.
doi: 10.1016/j.watres.2017.01.010
H. Chen, M. Zhang, Environ. Sci. Technol. 47 (2013) 8157-8163.
M. Munir, K. Wong, I. Xagoraraki, Water Res. 45 (2011) 681-693.
doi: 10.1016/j.watres.2010.08.033
S. Börjesson, A. Mattsson, P. Lindgren, J. Water Health 8 (2010) 247-256.
doi: 10.2166/wh.2009.159
H. Chen, M. Zhang, Environ. Sci. Technol. 47 (2013) 8157-8163.
R. Stepanauskas, T.C. Glenn, C.H. Jagoe, et al., Environ. Sci. Technol. 39 (2005) 3671-3678.
doi: 10.1021/es048468f
P. Gao, S. He, S. Huang, et al., Appl. Microbiol. Biot. 99 (2015) 3971-3980.
doi: 10.1007/s00253-015-6404-9
Z. Yu, L. Gunn, P. Wall, S. Fanning, Food Microbiol. 64 (2017) 23-32.
doi: 10.1016/j.fm.2016.12.009
H. Zhang, Q. Ji, L. Lai, G. Yao, B. Lai, Chin. Chem. Lett. 30 (2019) 1129-1132.
doi: 10.1016/j.cclet.2019.01.025
R. Chuanchuen, K. Beinlich, T.T. Hoang, et al., Antimicrob. Agents Chemother. 45 (2001) 428.
doi: 10.1128/AAC.45.2.428-432.2001
M.C. Jennings, K.P. Minbiole, W.M. Wuest, ACS Infect. Dis. 1 (2015) 288-303.
doi: 10.1021/acsinfecdis.5b00047
M. Tandukar, S. Oh, U. Tezel, K.T. Konstantinidis, S.G. Pavlostathis, Environ. Sci. Technol. 47 (2013) 9730-9738.
doi: 10.1021/es401507k
Y. Negreanu, Z. Pasternak, E. Jurkevitch, E. Cytryn, Environ. Sci. Technol. 46 (2012) 4800-4808.
doi: 10.1021/es204665b
J. Su, B. Wei, W. Ou-Yang, et al., Environ. Sci. Technol. 49 (2015) 7356-7363.
doi: 10.1021/acs.est.5b01012
B. Kurenbach, D. Marjoshi, C.F. Amábile-Cuevas, et al., MBio 6 (2015) e00009-15.
F. Baquero, J.L. Martínez, R. Cantón, Curr. Opin. Biotech. 19 (2008) 260-265.
doi: 10.1016/j.copbio.2008.05.006
X.X. Zhang, T. Zhang, M. Zhang, et al., Appl. Microbiol. Biot. 82 (2009) 1169-1177.
doi: 10.1007/s00253-009-1886-y
Q. Chen, L. Chen, J. Qi, et al., Chin. Chem. Lett. 30 (2019) 1214-1218.
doi: 10.1016/j.cclet.2019.03.002
J. Bao, X. Wang, J. Gu, et al., Bioresour. Technol. 295 (2020)121997.
doi: 10.1016/j.biortech.2019.121997
W. Sun, J. Gu, X. Wang, X. Qian, X. Tuo, Bioresour. Technol. 256 (2018) 342-349.
doi: 10.1016/j.biortech.2018.02.052
J. Lee, J.H. Jeon, J. Shin, et al., Sci. Total Environ. 605-606 (2017) 906-914.
L.L. Wei, X.H. Xia, F.Y. Zhu, et al., Water Res.181 (2020) 115903.
doi: 10.1016/j.watres.2020.115903
W.A.M. Hijnen, E.F. Beerendonk, G.J. Medema, Water Res. 40 (2006) 3-22.
doi: 10.1016/j.watres.2005.10.030
C.W. Mckinney, A. Pruden, Environ. Sci. Technol. 46 (2012) 393-400.
C. Liu, H. Shen, S. Wang, et al., Chin. Chem. Lett. 29 (2018) 1824-1828.
doi: 10.1016/j.cclet.2018.10.025
S.M. Shaban, I. Aiad, M.M. El-Sukkary, E. Soliman, M.Y. El-Awady, Chin. Chem. Lett. 28 (2017) 264-273.
doi: 10.1016/j.cclet.2016.09.010
J. Oh, D.E. Salcedo, C.A. Medriano, S. Kim, J. Environ. Sci.-China 26 (2014) 1238-1242.
doi: 10.1016/S1001-0742(13)60594-X
Y. Zhang, Y. Zhuang, J. Geng, et al., Sci. Total Environ. 512-513 (2015) 125-132.
J. Li, Y. Li, Z. Xiong, G. Yao, B. Lai, Chin. Chem. Lett. 30 (2019) 2139-2146.
doi: 10.1016/j.cclet.2019.04.057
L.Rizzo, D.Sannino, V.Vaiano, etal., Appl.Catal.B:Environ.144 (2014)369-378.
doi: 10.1016/j.apcatb.2013.07.033
T.Zhang, M.Zhang, X.Zhang, H.Fang, Environ.Sci.Technol.43 (2009)3455-3460.
doi: 10.1021/es803309m
P.Y. Hong, T.R. Julian, M.R. Jumat, Microbial Safety in Water Resources, Frontiers in microbiology, Lausanne, (2018).
L.L. Wei, X.Y. An, S. Wang, et al., Bioresource Technol. 244 (2017) 161-269.
C.M. Manaia, J. Rocha, N. Scaccia, et al., Environ. Int. 115 (2018) 312-324.
doi: 10.1016/j.envint.2018.03.044
A. Osińska, E. Korzeniewska, M. Harnisz, S. Niestępski, Appl. Sci. 9 (2019) 387.
doi: 10.3390/app9030387
L. Liu, Y. Liu, Z. Wang, et al., J. Hazard. Mater. 278 (2014) 304-310.
doi: 10.1016/j.jhazmat.2014.06.015
X. Huang, C. Liu, K. Li, et al., Water Res. 70 (2015) 109-117.
doi: 10.1016/j.watres.2014.11.048
Yuxin Li , Chengbin Liu , Qiuju Li , Shun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541
Zhiqiang Liu , Qiang Gao , Wei Shen , Meifeng Xu , Yunxin Li , Weilin Hou , Hai-Wei Shi , Yaozuo Yuan , Erwin Adams , Hian Kee Lee , Sheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338
Jian Peng , Yue Jiang , Shuangyu Wu , Yanran Cheng , Jingyu Liang , Yixin Wang , Zhuo Li , Sijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903
Xiaotao Jin , Yanlan Wang , Yingping Huang , Di Huang , Xiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499
Shenghui Tu , Anru Liu , Hongxiang Zhang , Lu Sun , Minghui Luo , Shan Huang , Ting Huang , Honggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761
Shukun Le , Peng Wang , Yuhao Liu , Mutao Xu , Quansheng Liu , Qijie Jin , Jie Miao , Chengzhang Zhu , Haitao Xu . High-efficiency Fe(Ⅲ)-doped ultrathin VO2 nanobelts boosted peroxydisulfate activation for actual antibiotics photodegradation. Chinese Chemical Letters, 2025, 36(3): 110087-. doi: 10.1016/j.cclet.2024.110087
Huijuan Li , Zhu Wang , Jiagen Geng , Ruiping Song , Xiaoyin Liu , Chaochen Fu , Si Li . Current advances in UV-based advanced oxidation processes for the abatement of fluoroquinolone antibiotics in wastewater. Chinese Chemical Letters, 2025, 36(4): 110138-. doi: 10.1016/j.cclet.2024.110138
Zengchao Guo , Weiwei Liu , Tengfei Liu , Jinpeng Wang , Hui Jiang , Xiaohui Liu , Yossi Weizmann , Xuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060
Peiling Li , Qing Feng , Hongling Yuan , Qin Wang . Live Interview Recording about the Penicillin Family. University Chemistry, 2024, 39(9): 122-127. doi: 10.3866/PKU.DXHX202311022
Ziheng Zhuang , Xiao Xu , Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040
Jijun Sun , Qianlang Wang , Qian Chen , Quanqin Zhao , Shumei Zhai . The Antibiotic Legion’s Manifesto to Human Allies. University Chemistry, 2025, 40(4): 307-321. doi: 10.12461/PKU.DXHX202405206
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Jiliang Deng , Guoliang Shi , Zhihang Ye , Quan Xiao , Xiaoting Zhang , Lei Ren , Fangyu Yang , Miao Wang . Unveiling and swift diagnosing chronic wound healing with artificial intelligence assistance. Chinese Chemical Letters, 2025, 36(3): 110496-. doi: 10.1016/j.cclet.2024.110496
Kai Ye , Zhicheng Ye , Chuantao Wang , Zhilai Luo , Cheng Lian , Chunyan Bao . Artificial signal transduction triggered by molecular photoisomerization in lipid membranes. Chinese Chemical Letters, 2025, 36(4): 110033-. doi: 10.1016/j.cclet.2024.110033
Yunxin Li , Jinghui Zhang , Jisen Chen , Feng Zhu , Zhiqiang Liu , Peng Bao , Wei Shen , Sheng Tang . Detection of SARS-CoV-2 based on artificial intelligence-assisted smartphone: A review. Chinese Chemical Letters, 2024, 35(7): 109220-. doi: 10.1016/j.cclet.2023.109220
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
Lei Zhou , Youjun Zhou , Lizhen Fang , Yiqiao Bai , Yujia Meng , Liang Li , Jie Yang , Yong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509
Shangda Qu , Yiming Yuan , Xu Ye , Wentao Xu . High sensitivity artificial synapses using printed high-transmittance ITO fibers for neuromorphic computing. Chinese Chemical Letters, 2024, 35(12): 110030-. doi: 10.1016/j.cclet.2024.110030
Ran Cen , Yan-Yan Tang , Li-Xia Chen , Zhu Tao , Xin Xiao . A novel supramolecular assembly based on nor-seco-cucurbit[10]uril for spermine sensing and artificial light-harvesting. Chinese Chemical Letters, 2025, 36(1): 109744-. doi: 10.1016/j.cclet.2024.109744
Hongbin Liu , Putao Zhang . Effective approach to stabilize silicon anode: Controllable molecular construction of artificial solid electrolyte interphase. Chinese Journal of Structural Chemistry, 2025, 44(3): 100444-100444. doi: 10.1016/j.cjsc.2024.100444