Citation: Zhang Huiqun, Song Shiliu, Sun Lianpeng, Zhao Qing, Lu Hui. Comparative study on ciprofloxacin removal in sulfur-mediated biological systems[J]. Chinese Chemical Letters, ;2020, 31(6): 1432-1437. doi: 10.1016/j.cclet.2020.04.048 shu

Comparative study on ciprofloxacin removal in sulfur-mediated biological systems

    * Corresponding author at: School of Environmental Science and Engineering Sun Yat-sen University Guangzhou 510275 China.
    E-mail address: lvhui3@mail.sysu.edu.cn (H. Lu).
  • Received Date: 6 April 2020
    Revised Date: 23 April 2020
    Accepted Date: 23 April 2020
    Available Online: 1 June 2020

Figures(5)

  • The removal of ciprofloxacin (CIP) in sulfur-mediated bioprocesses, e.g., sulfate-reducing bacteria (SRB)-mediated process and sulfur-oxidizing bacteria (SOB)-mediated process, was examined for the first time. The results showed that the SRB-mediated process had more efficient CIP removal than that in SOB-mediated process. Adsorption was the primary removal pathway of CIP in SRB-mediated process and SOB-mediated process with the specific adsorption removal rate of 131.4±1.1 μg/g-SS/d and 30.1±1.4 μg/g-SS/d, respectively, at influent CIP concentration of 500 μg/L. In addition, extracellular polymeric substances (EPS) also played an important role on CIP migration and removal in both types of sludge. Further study was conducted to specify the different adsorption of CIP in these two sludge systems from the perspective of sludge properties. The results indicated that there are more potential adsorption sites exist on the SRB-mediated sludge for CIP adsorption than SOB-mediated sludge since the higher protein (PN) content and more kinds of aromatic amino acid substances in EPS, more negative zeta-potential and stronger and more numbers of functional groups in SRB-mediated sludge compared to SOB-mediated sludge. The findings of this study provide insights into the sludge properties affecting CIP removal in sulfur-mediated bioprocesses, and are of guiding significance to employ sulfur-mediated biological systems for treating CIP-containing wastewaters.
  • 加载中
    1. [1]

      A.S. Oberoi, Y.Y. Jia, H.Q. Zhang, et al., Environ. Sci. Technol. 53(2019) 7234-7264.  doi: 10.1021/acs.est.9b01131

    2. [2]

      Q.Q. Zhang, G.G. Ying, C.G. Pan, et al., Environ. Sci. Technol. 49(2015) 6772-6782.  doi: 10.1021/acs.est.5b00729

    3. [3]

      I. Michael, L. Rizzo, C.S. McArdell, et al., Water Res. 47(2013) 957-995.

    4. [4]

      C. Rutgersson, J. Fick, N. Marathe, et al., Environ. Sci. Technol. 48(2014) 7825-7832.  doi: 10.1021/es501452a

    5. [5]

      A.P. Toolaram, T. Haddad, C. Leder, et al., Environ. Pollut. 211(2016) 148-156.  doi: 10.1016/j.envpol.2015.12.040

    6. [6]

      N. Vieno, T. Tuhkanen, L. Kronberg, Water Res. 41(2007) 1001-1012.

    7. [7]

      H.Q. Zhang, Y.Y. Jia, S.K. Khanal, et al., Environ. Sci. Technol. 52(2018) 6476-6486.  doi: 10.1021/acs.est.8b00568

    8. [8]

      Y.Y. Jia, S.K. Khanal, H.Q. Zhang, et al., Water Res. 119(2017) 12-20.

    9. [9]

      H. Lu, G.A. Ekama, D. Wu, et al., Water Res. 46(2012) 475-490.

    10. [10]

      Y.Y. Jia, H.Q. Zhang, S.K. Khanal, et al., Water Res. 161(2019) 191-201.

    11. [11]

      D. Pokorna, J. Zabranska, Biotechnol. Adv. 33(2015) 1246-1259.  doi: 10.1016/j.biotechadv.2015.02.007

    12. [12]

      H.Q. Zhang, S.K. Khanal, Y.Y. Jia, et al., Chem. Eng. J. 378(2019) 122103.  doi: 10.1016/j.cej.2019.122103

    13. [13]

      A.A. MacKay, D. Vasudevan, J. Environ, Environ. Sci. Technol. 46(2012) 9209-9223.  doi: 10.1021/es301036t

    14. [14]

      F. Polesel, K. Lehnberg, W. Dott, et al., Chemosphere 119(2015) 105-111.  doi: 10.1016/j.chemosphere.2014.05.048

    15. [15]

      G.P. Sheng, H.Q. Yu, X.Y. Li, Biotechnol. Adv. 28(2010) 882-894.  doi: 10.1016/j.biotechadv.2010.08.001

    16. [16]

      B. Yan, C.H. Niu, Chem. Eng. J. 307(2017) 631-642.  doi: 10.1016/j.cej.2016.08.065

    17. [17]

      M. Keiluweit, M. Kleber, Environ. Sci. Technol. 43(2009) 3421-3429.  doi: 10.1021/es8033044

    18. [18]

      X.C. Song, D.F. Liu, G.W. Zhang, et al., Bioresour. Technol. 151(2014) 428-431.  doi: 10.1016/j.biortech.2013.10.055

    19. [19]

      R. Lindberg, P.A. Jarnheimer, B. Olsen, et al., Chemosphere 57(2004) 1479-1488.  doi: 10.1016/j.chemosphere.2004.09.015

    20. [20]

      Y.Y. Jia, S.K. Khanal, H.Y. Shu, et al., Water Res. 136(2018) 64-74.

    21. [21]

      B. Li, T. Zhang, Environ. Sci. Technol. 44(2010) 3468-3473.  doi: 10.1021/es903490h

    22. [22]

      S. Sen Gupta, K.G. Bhattacharyya, Adv. Colloid Interf. Sci. 162(2011) 39-58.  doi: 10.1016/j.cis.2010.12.004

    23. [23]

      M.J. Ahmed, Environ. Toxicol. Phar. 50(2017) 1-10.  doi: 10.1016/j.etap.2017.01.004

    24. [24]

      B.M. Lee, J. Hur, J. Environ, Environ. Sci. Technol. 50(2016) 7364-7372.  doi: 10.1021/acs.est.6b01286

    25. [25]

      X.L. Hou, S.T. Liu, Z.T. Zhang, Water Res. 75(2015) 51-62.

    26. [26]

      H.Q. Zhang, S.L. Song, Y.Y. Jia, et al., Water Res. 164(2019) 114964.

    27. [27]

      J. Xu, G.P. Sheng, Y. Ma, et al., Water Res. 47(2013) 5298-5306.

    28. [28]

      J. Liu, Y. Wei, K. Li, et al., Water Res. 90(2016) 225-234.

    29. [29]

      S. Bala Subramanian, S. Yan, R.D. Tyagi, et al., Water Res. 44(2010) 2253-2266.

    30. [30]

      S. Felz, T.R. Neu, C.M. Mark, Loosdrecht van, et al., Water Res. 169(2020) 115291.

    31. [31]

      L. Hao, S.N. Liss, B.Q. Liao, Water Res. 89(2016) 132-141.

    32. [32]

      W.X. Zhang, F. Jiang, Water Res. 157(2019) 445-453.

  • 加载中
    1. [1]

      Peng Liu Chao Long Hong Ming Qian Ying Li Ai Min Li Quan Xing Zhang . Synthesis and application of a hydrophobic hypercrosslinked polymeric resin for removing VOCs from humid gas stream. Chinese Chemical Letters, 2009, 20(4): 492-495. doi: 10.1016/j.cclet.2008.11.019

    2. [2]

      Viran P. MahidaManish P. Patel . Superabsorbent amphoteric nanohydrogels:Synthesis, characterization and dyes adsorption studies. Chinese Chemical Letters, 2016, 27(03): 471-474. doi: 10.1016/j.cclet.2015.12.015

    3. [3]

      Yong Qiang He Na Na Zhang Xiao Dong Wang . Adsorption of graphene oxide/chitosan porous materials for metal ions. Chinese Chemical Letters, 2011, 22(7): 859-862. doi: 10.1016/j.cclet.2010.12.049

    4. [4]

      Yun Tian . Characterization of nitrate ions adsorption and diffusion in P(DMAEMA/HEMA) hydrogels. Chinese Chemical Letters, 2008, 19(9): 1111-1114. doi: 10.1016/j.cclet.2008.05.040

    5. [5]

      Xiu-Ming LiuDong-Qin HeKuan-Jun Fang . Adsorption of cationic copolymer nanoparticles onto bamboo fiber surfaces measured by conductometric titration. Chinese Chemical Letters, 2015, 26(9): 1174-1178. doi: 10.1016/j.cclet.2015.05.006

    6. [6]

      Jin Nan Wang Ai Min Li Yang Zhou Li Xu . Study on the influence of humic acid of different molecular weight on basic ion exchange resin's adsorption capacity. Chinese Chemical Letters, 2009, 20(12): 1478-1482. doi: 10.1016/j.cclet.2009.07.013

    7. [7]

      Zhuo Guo Li Feng Wang Zhan Gao Wei Wei Zhang . Equilibrium and kinetic studies on the adsorption of VB12 onto CMK-3. Chinese Chemical Letters, 2007, 18(2): 233-236. doi: 10.1016/j.cclet.2006.12.032

    8. [8]

      Chun Hai Yang Cheng Guo Hu Sheng Shui Hu . Predominating stable adsorption and direct electrochemistry of glucose oxidase on carbon nanotubes by oxygen-containing groups. Chinese Chemical Letters, 2007, 18(3): 313-315. doi: 10.1016/j.cclet.2007.01.021

    9. [9]

      Zu Pei LIANG Ya Qing FENG Zhi Yan LIANG Shu Xian MENG . Kinetic of Adsorption of Urea Nitrogen onto Chitosan Coated Dialdehyde Cellulose under Catalysis of Immobilized Urease. Chinese Chemical Letters, 2005, 16(5): 697-700.

    10. [10]

      Le-Chen Chen Shan Lei Mo-Zhen Wang Jun Yang Xue-Wu Ge . Fabrication of macroporous polystyrene/graphene oxide composite monolith and its adsorption property for tetracycline. Chinese Chemical Letters, 2016, 27(4): 511-517.

    11. [11]

      Qian-Tao ShiWei Yan . Adsorption of arsenate on lanthanum-impregnated activated alumina: In situ ATR-FTIR and two-dimensional correlation analysis study. Chinese Chemical Letters, 2015, 26(2): 200-204. doi: 10.1016/j.cclet.2014.12.009

    12. [12]

      Cheng Cheng Jin Nan Wang Li Xu Ai Min Li . Preparation of new hyper cross-linked chelating resin for adsorption of Cu2+ and Ni2+ from water. Chinese Chemical Letters, 2012, 23(2): 245-248. doi: 10.1016/j.cclet.2011.10.019

    13. [13]

      Hui ZhangFei HuangDe-Lei LiuPeng Shi . Highly efficient removal of Cr(VI) from wastewater via adsorption with novel magnetic Fe3O4@C@MgAl-layered double-hydroxide. Chinese Chemical Letters, 2015, 26(9): 1137-1143. doi: 10.1016/j.cclet.2015.05.026

    14. [14]

      Feng Ting Li Hong Yang Yan Zhao Ran Xu . Novel modified pectin for heavy metal adsorption. Chinese Chemical Letters, 2007, 18(3): 325-328. doi: 10.1016/j.cclet.2007.01.034

    15. [15]

      Gu Qing Xiao Li Ping Long Jiao Liang Wang . Synthesis of the water-compatible p-acetaminophen resin and its adsorption performances for vanillin in aqueous solution. Chinese Chemical Letters, 2012, 23(1): 123-126. doi: 10.1016/j.cclet.2011.10.007

    16. [16]

      BAYOL E.GVRTEN A. A.DURSUN M.KAYAKIRILMAZ K. . Adsorption Behavior and Inhibition Corrosion Effect of Sodium Carboxymethyl Cellulose on Mild Steel in Acidic Medium. Acta Physico-Chimica Sinica, 2008, 24(12): 2236-2242. doi: 10.1016/S1872-1508(08)60085-6

    17. [17]

      SOLMAZ R.MERT M. E.KARDAS G.YAZICI B.ERBIL M. . Adsorption and Corrosion Inhibition Effect of 1,1’-Thiocarbonyldiimidazole on Mild Steel in H2SO4 Solution and Synergistic Effect of Iodide Ion. Acta Physico-Chimica Sinica, 2008, 24(07): 1185-1191. doi: 10.1016/S1872-1508(08)60053-4

    18. [18]

      Meng-Qiao WangQing ZhouMan-Cheng ZhangChen-Dong ShuangYang ZhouAi-Min Li . Preparation of a novel magnetic resin for effective removal of both natural organic matter and organic micropollutants. Chinese Chemical Letters, 2013, 24(07): 601-604.

    19. [19]

      Yue SunZhi-Chao LiYan Xu . Preparation and application of a novel orotic acid chelating resin for removal of Cu(Ⅱ) in aqueous solutions. Chinese Chemical Letters, 2013, 24(8): 747-750.

Metrics
  • PDF Downloads(2)
  • Abstract views(112)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return