Citation: Mubashir Hussain, Zhen Chen, Mu Lv, Jingyi Xu, Xiaohan Dong, Jingzhou Zhao, Song Li, Yan Deng, Nongyue He, Zhiyang Li, Bin Liu. Rapid and label-free classification of pathogens based on light scattering, reduced power spectral features and support vector machine[J]. Chinese Chemical Letters, ;2020, 31(12): 3163-3167. doi: 10.1016/j.cclet.2020.04.038 shu

Rapid and label-free classification of pathogens based on light scattering, reduced power spectral features and support vector machine

Figures(5)

  • The rapid identification of pathogens is crucial in controlling the food quality and safety. The proposed system for the rapid and label-free identification of pathogens is based on the principle of laser scattering from the bacterial microbes. The clinical prototype consists of three parts: the laser beam, photodetectors, and the data acquisition system. The bacterial testing sample was mixed with 10 mL distilled water and placed inside the machine chamber. When the bacterial microbes pass by the laser beam, the scattering of light occurs due to variation in size, shape, and morphology. Due to this reason, different types of pathogens show their unique light scattering patterns. The photo-detectors were arranged at the surroundings of the sample at different angles to collect the scattered light. The photodetectors convert the scattered light intensity into a voltage waveform. The waveform features were acquired by using the power spectral characteristics, and the dimensionality of extracted features was reduced by applying minimal-redundancy-maximal-relevance criterion (mRMR). A support vector machine (SVM) classifier was developed by training the selected power spectral features for the classification of three different bacterial microbes. The resulting average identification accuracies of E. faecalis, E. coli and S. aureus were 99%, 87%, and 94%, respectively. The overall experimental results yield a higher accuracy of 93.6%, indicating that the proposed device has the potential for label-free identification of pathogens with simplicity, rapidity, and cost-effectiveness.
  • 加载中
    1. [1]

      X.W. Wang, L. Zhang, L.Q, et al., Appl. Microbiol. Biotechnol. 76(2007) 225-233.  doi: 10.1007/s00253-007-0993-x

    2. [2]

      A.K. Jha, H.P. Bais, J.M. Vivanco, Infect. Immun. 73(2005) 464-475.  doi: 10.1128/IAI.73.1.464-475.2005

    3. [3]

      S. Wang, Y. Zhang, L. Zhang, et al., Chin. Chem. Lett. 29(2018) 1513-1516.  doi: 10.1016/j.cclet.2018.08.002

    4. [4]

      J.B. Kaper, J.P. Nataro, H.L.T. Mobley, Nat. Rev. Microbiol. 2(2004) 123-140.  doi: 10.1038/nrmicro818

    5. [5]

      Z. Hong, D. Chen, W. Zhou, et al., Nanosci. Nanotechnol. Lett. 10(2018) 1606-1612.  doi: 10.1166/nnl.2018.2809

    6. [6]

      J.R. Johnson, T.A. Russo, J. Lab, Clin. Med. 139(2002) 155-162.  doi: 10.1067/mlc.2002.121550

    7. [7]

      R.A. Weinstein, M.J.M. Bonten, D.J. Austin, M. Lipsitch, Clin. Infect. Dis. 33(2001) 1739-1746.  doi: 10.1086/323761

    8. [8]

      S. Yang, R.E. Rothman, Lancet Infect. Dis. 4(2004) 337-348.  doi: 10.1016/S1473-3099(04)01044-8

    9. [9]

      Y. Yamamoto, Clin. Diagn. Lab. Immunol. 9(2002) 508-514.  doi: 10.1128/CDLI.9.3.508-514.2002

    10. [10]

      D. Zhou, J. Luo, T. Sun, et al., Nanosci. Nanotechnol. Lett. 11(2019) 136-142.  doi: 10.1166/nnl.2019.2861

    11. [11]

      P. Dakrong, H. Yusuke, Nano-Micro Lett. 9(2017) 113-121.

    12. [12]

      W. Li, A. Nie, Q. Li, et al., Mater. Express 9(2019) 484-491.  doi: 10.1166/mex.2019.1511

    13. [13]

      J. Deng, L. Fu, R. Wang, et al., J. Thorac. Dis. 6(2014) 539-544.  doi: 10.3978/j.issn.2072-1439.2014.02.20

    14. [14]

      L.M. Schlecht, B.M. Peters, B.P. Krom, et al., Microbiology 161(2015) 168-181.  doi: 10.1099/mic.0.083485-0

    15. [15]

      L. Wang, Q. Lin, J. Chen, et al., Nanosci. Nanotechnol. Lett.11(2019) 998-1003.  doi: 10.1166/nnl.2019.2970

    16. [16]

      L. Huang, D. Zhang, L. Jiao, et al., Chin. Chem. Lett. 29(2018) 1853-1856.  doi: 10.1016/j.cclet.2018.11.028

    17. [17]

      D.L. Haavig, K.R. Hollen, A.E. Debruin, et al., J. AOAC Int.100(2017) 1836-1847.  doi: 10.5740/jaoacint.17-0097

    18. [18]

      M. Hussain, M. Lv, J. Xu, et al., IEEE International Symposium on Medical Measurements and Applications, Istanbul, Turkey, 2019.

    19. [19]

      M. Hussain, M. Lv, X. Dong, et al., J. Nanosci. Nanotechnol. 20(2020) 4047-4056.  doi: 10.1166/jnn.2020.17491

    20. [20]

      R.N. Khushaba, M. Takruri, J.V. Miro, S. Kodagoda, Neural Netw. 55(2014) 42-58.  doi: 10.1016/j.neunet.2014.03.010

    21. [21]

      R.N. Khushaba, L. Shi, S. Kodagoda, IEEE International Symposium on Communications & Information Technologies, Gold Coast, Australia, 2012.

    22. [22]

      A.H. Al-Timemy, R.N. Khushaba, G. Bugmann, J. Escudero, IEEE T. Neur. Sys.Reh. 24(2016) 650-661.  doi: 10.1109/TNSRE.2015.2445634

    23. [23]

      R.N. Khushaba, A. Al-Ani, A. Al-Jumaily, Expert Syst. Appl. 38(2011) 11515-11526.

    24. [24]

      P. Hanchuan, L. Fuhui, C. Ding, IEEE Trans. Pattern Anal. Mach. Intell. 27(2005) 1226-1238.

    25. [25]

      S. Raj, K.C. Ray, IEEE T. Instrum. Meas. 66(2017) 470-478.  doi: 10.1109/TIM.2016.2642758

    26. [26]

      M.A. Aslam, C. Xue, K. Wang, et al., Nano Biomed. Eng. 12(2020) 1-3.

    27. [27]

      W. Yan, K. Wang, H. Xu, et al., Nano-Micro Lett. 11(2019) 7.

    28. [28]

      C.C. Chang, C.J. Lin, ACM T. Intel. Syst. Tec. 2(2011) 27.

    29. [29]

      N. Goudarzi, M. Goodarzi, M.A. Chamjangali, et al., Chin. Chem. Lett. 24(2013) 904-908.

  • 加载中
    1. [1]

      Wei XIE Fu Sheng NIE Meng Long LI Guang Ming LI Min Chun LU . Alcohols' Classification by Infrared Spectra Segment Based on Support Vector Machines. Chinese Chemical Letters, 2006, 17(7): 929-932.

    2. [2]

      Xue Song WANG Jin You DUAN Ji Nian FANG . Structural Features of a Polysaccharide from Centella asiatica. Chinese Chemical Letters, 2004, 15(2): 187-190.

    3. [3]

      Xiao Zhen YANG Shaw Ling HSU . MOLECULAR DYNAMICS SIMULATION ON VIERATIONAL SPECTROSCOPIC FEATURES OF HYDROGEN BONDS IN CRYSTALLINE POLYMERS. Chinese Chemical Letters, 1993, 4(7): 635-638.

    4. [4]

      DENG LinLIANG De-Hai . Online Monitoring of the Aggregation and Fusion of DPPC/PAby Static and Dynamic Light Scattering. Acta Physico-Chimica Sinica, 2010, 26(04): 862-868. doi: 10.3866/PKU.WHXB20100422

    5. [5]

      HAN Li-JuanYE Zhong-BinCHEN HongLUO Ping-Ya . Self-Assembly of Hydrophobically Associating Polyacrylamide and Gemini Surfactant. Acta Physico-Chimica Sinica, 2012, 28(06): 1405-1410. doi: 10.3866/PKU.WHXB201203202

    6. [6]

      Wu Pei-QiangMa Xing-QiWu Qi . Laser Light Scattering Investigation of the Aggregation Process of Trichosanthin in Aqueous Solution. Acta Physico-Chimica Sinica, 1995, 11(04): 331-336. doi: 10.3866/PKU.WHXB19950409

    7. [7]

      Bai Lin ZHANG Yu Fan HE Er Kang WANG . Some Unusual Features of Highly Oriented Pyrolytic Graphiteobserved by Electrochemical Scanning Tunneling Microscopy. Chinese Chemical Letters, 1998, 9(5): 501-504.

    8. [8]

      LI BoaFAN Hui-TaoWANG Zhi-QiangaFENG Chao-Qiang . Syntheses, Structure and Thermal Analysis of a Cobalt Coordination Polymer with Multiform Helical Features Based on Flexible Iododicarboxylate Ligand and N-donor Ancillary Ligand. Chinese Journal of Structural Chemistry, 2015, 34(5): 735-740. doi: 10.14102/j.cnki.0254-5861.2011-0600

    9. [9]

      Muhammad AsgherHafiz Muhammad Nasir Iqbal . Enhanced catalytic features of sol-gel immobilized MnP isolated from solid state culture of Pleurotus ostreatus IBL-02. Chinese Chemical Letters, 2013, 24(4): 344-346.

    10. [10]

      Zhang YiyingZhang XilinCheng ChengYang Zongxian . Recent progress of MXenes as the support of catalysts for the CO xidation and oxygen reduction reaction. Chinese Chemical Letters, 2020, 31(4): 931-936. doi: 10.1016/j.cclet.2019.12.010

    11. [11]

      Hong Ping GUO Cheng Zhi HUANG Jian LING . Resonance Light Scattering Imaging Determination of Heparin. Chinese Chemical Letters, 2006, 17(1): 53-56.

    12. [12]

      Xin Qiu Li Chuan Tang Chao Qing Dong Ji Cun Ren . Characterization of gold nanoparticle bioconjugation by resonance light scattering correlation spectroscopy. Chinese Chemical Letters, 2010, 21(10): 1227-1230. doi: 10.1016/j.cclet.2010.05.007

    13. [13]

      Ju ZUO Jian Feng HUANG Ying Li AN Fang Xing LI Chang Ying ZHU Li LIU Zhi Guang ZHANG Bing Lin HE . Dynamic Behavior and Mass Transport in Polyacrylic Acid Gel by Dynamic Light Scattering. Chinese Chemical Letters, 2002, 13(5): 448-451.

    14. [14]

      Hong LIANG Xing Can SHEN Fang LI Zhi Liang JIANG . The Photochemical Study of HSA and BSA with Resonance Light-Scattering and Fluorescence Spectra. Chinese Chemical Letters, 2000, 11(3): 251-254.

    15. [15]

      Zhang HanSun LinZhang YuanKang YanHu HuilianIqbal JibranDu Yiping . Rapid determination of illegal additives chrysoidin and malachite green by surface-enhanced Raman scattering with silanized support based substrate. Chinese Chemical Letters, 2018, 29(6): 981-984. doi: 10.1016/j.cclet.2017.10.017

    16. [16]

      FU YuAO Hong-LiangZHANG Ling-XiaoGUO Yu-MengLIANG Ju-MeiZHANG Li-JuanLI Fan . CNx Nanotube Support Platinum-CeOx as Highly Stable and Efficient Electrocatalyst for Oxygen Reduction Reaction. Chinese Journal of Inorganic Chemistry, 2018, 34(9): 1677-1687. doi: 10.11862/CJIC.2018.206

    17. [17]

      Yu QiongweiLiu ShijieZheng FengXiao HuamingGuan HongyanFeng Yuqi . Identification and quantification of benzimidazole metabolites of thiophonate-methyl sprayed on celery cabbage using SiO2@NiO solid-phase extraction in combination with HPLC-MS/MS. Chinese Chemical Letters, 2020, 31(2): 482-486. doi: 10.1016/j.cclet.2019.07.065

    18. [18]

      Shuang Hu Zhuo Bin Shang Yu Wang . Effect of dextran molecular weight on resonance light-scattering of quantum dots modified with dextran and concanavalin A. Chinese Chemical Letters, 2011, 22(2): 205-208. doi: 10.1016/j.cclet.2010.07.034

    19. [19]

      Fan JinXie Zhi-HaiTeng Xiao-XiaoZhang Yu . Determination of methylene blue by resonance light scattering method using silica nanoparticles as probe. Chinese Chemical Letters, 2017, 28(5): 1104-1110. doi: 10.1016/j.cclet.2016.11.025

Metrics
  • PDF Downloads(1)
  • Abstract views(81)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return