Citation: Sun Junjie, Zheng Wanzhen, Lyu Siliu, He Feng, Yang Bin, Li Zhongjian, Lei Lecheng, Hou Yang. Bi/Bi2O3 nanoparticles supported on N-doped reduced graphene oxide for highly efficient CO2 electroreduction to formate[J]. Chinese Chemical Letters, ;2020, 31(6): 1415-1421. doi: 10.1016/j.cclet.2020.04.031 shu

Bi/Bi2O3 nanoparticles supported on N-doped reduced graphene oxide for highly efficient CO2 electroreduction to formate

    * Corresponding authors.
    E-mail addresses: fenghe@zjut.edu.cn (F. He) yhou@zju.edu.cn (Y. Hou).
    1 These two authors contributed equally to this work.
  • Received Date: 28 March 2020
    Revised Date: 12 April 2020
    Accepted Date: 12 April 2020
    Available Online: 1 June 2020

Figures(6)

  • Electrocatalytic CO2 reduction (CO2ER) into formate is a desirable route to achieve efficient transformation of CO2 to value-added chemicals, however, it still suffers from limited catalytic activity and poor selectivity. Herein, we develop a hybrid electrocatalyst composed of bismuth and bismuth oxide nanoparticles (NPs) supported on nitrogen-doped reduced graphene oxide (Bi/Bi2O3/NrGO) nanosheets prepared by a combined hydrothermal with calcination treatment. Thanks to the combination of undercoordinated sites and strong synergistic effect between Bi and Bi2O3, Bi/Bi2O3/NrGO-700 hybrid displays a promoted CO2ER catalytic performance and selectivity for formate production, as featured by a small onset potential of -0.5 V, a high current density of -18 mA/cm2, the maximum Faradaic efficiency of 85% at -0.9 V, and a low Tafel slope of 166 mV/dec. Experimental results reveal that the higher CO2ER performance of Bi/Bi2O3/NrGO-700 than that of Bi NPs supported on NrGO (Bi/NrGO) can be due to the partial reduction of Bi2O3 NPs into Bi, which significantly increases undercoordinated active sites on Bi NPs surface, thus boosting its CO2ER performance. Furthermore, a two-electrode device with Ir/C anode and Bi/Bi2O3/NrGO-700 cathode could be integrated with two alkaline batteries or a planar solar cell to achieve highly active water splitting and CO2ER.
  • 加载中
    1. [1]

      (a) F. Li, L. Chen, G.P. Knowles, D.R. MacFarlane, J. Zhang, Angew. Chem. Int. Ed. 56 (2017) 505-509;
      (b) C. Lu, J. Yang, S. Wei, et al., Adv. Funct. Mater. 29 (2019) 1806884;
      (c) T. Wang, Q. Zhao, Y. Fu, et al., Small Methods 3 (2019) 1900210;
      (d) W. Xiong, J. Yang, L. Shuai, et al., ChemElectroChem 6 (2019) 5951-5957;
      (e) W. Zheng, J. Yang, H. Chen, et al., Adv. Funct. Mater. 30 (2019) 1907658;
      (f) W. Zheng, C. Guo, J. Yang, et al., Carbon 150 (2019) 52-59;
      (g) C. Wang, Y. Zhao, H. Xu, et al., Appl. Catal. B 263 (2020) 118314;
      (h) X. Wu, C. Wang, Y. Wei, et al., J. Catal. 377 (2019) 309-321;
      (i) Y. Zhao, Y. Wei, X. Wu, et al., Appl. Catal. B 226 (2018) 360-372.

    2. [2]

      L. Sun, V. Reddu, A.C. Fisher, X. Wang, Energy. Environ. Sci. 13(2020) 374-403.  doi: 10.1039/C9EE03660A

    3. [3]

      E. Irtem, T. Andreu, A. Parra, et al., J. Mater. Chem. A 4(2016) 13582-13588.  doi: 10.1039/C6TA04432H

    4. [4]

      Z.B. Hoffman, T.S. Gray, K.B. Moraveck, T.B. Gunnoe, G. Zangari, ACS Catal. 7(2017) 5381-5390.  doi: 10.1021/acscatal.7b01161

    5. [5]

      J. Schneider, H. Jia, K. Kobiro, et al., Energy. Environ. Sci. 5(2012) 9502-9510.  doi: 10.1039/c2ee22528j

    6. [6]

      C. Yan, H. Li, Y. Ye, et al., Energy. Environ. Sci. 11(2018) 1204-1210.  doi: 10.1039/C8EE00133B

    7. [7]

      N. Han, Y. Wang, H. Yang, et al., Nat. Commun. 9(2018) 1320.  doi: 10.1038/s41467-018-03712-z

    8. [8]

      (a) S. Gao, Y. Lin, X. Jiao, et al., Nature 529 (2016) 68-71;
      (b) H. Mistry, A.S. Varela, C.S. Bonifacio, et al., Nat. Commun. 7 (2016) 12123;
      (c) Y. Chen, M.W. Kanan, J. Am. Chem. Soc. 134 (2012) 1986-1989.

    9. [9]

      (a) S. Liu, X.F. Lu, J. Xiao, X. Wang, X.W.D. Lou, Angew. Chem. Int. Ed. 58 (2019) 13828-13833;
      (b) Q. Gong, P. Ding, M. Xu, et al., Nat. Commun. 10 (2019) 13828-13833;
      (c) Y. Zhang, F. Li, X. Zhang, et al., J. Mater. Chem. A 6 (2018) 4714-4720;
      (d) C.C. Miao, G.Q. Yuan, ChemElectroChem 5 (2018) 3741-3747.

    10. [10]

      (a) H. Zhong, Y. Qiu, T. Zhang, et al., J. Mater. Chem. A 4 (2016) 13746-13753;
      (b) J.H. Koh, D.H. Won, T. Eom, et al., ACS Catal. 7 (2017) 5071-5077.

    11. [11]

      H. Huang, Y. He, X. Li, et al., J. Mater. Chem. A 3(2015) 24547-24556.  doi: 10.1039/C5TA07655B

    12. [12]

      C. Liu, X. Huang, J. Liu, et al., Adv. Sci. 7(2020) 1901480.  doi: 10.1002/advs.201901480

    13. [13]

      W. Zhang, Y. Hu, L. Ma, et al., Nano Energy 53(2018) 808-816.  doi: 10.1016/j.nanoen.2018.09.053

    14. [14]

      M. Ahila, M. Malligavathy, E. Subramanian, D.P. Padiyan, Solid State Ionics 298(2016) 23-34.  doi: 10.1016/j.ssi.2016.10.017

    15. [15]

      J. Hou, C. Yang, Z. Wang, et al., Appl. Catal. B 142-143(2013) 504-511.

    16. [16]

      Y. Wang, J. Zhao, Y. Zhu, et al., Colloids Surf. A 434(2013) 296-302.  doi: 10.1016/j.colsurfa.2013.05.078

    17. [17]

      Y. Yu, C. Cao, H. Liu, et al., J. Mater. Chem. A 2(2014) 1677-1681.  doi: 10.1039/C3TA14494A

    18. [18]

      P.T. Babar, A.C. Lokhande, B.S. Pawar, et al., Appl. Surf. Sci. 427(2018) 253-259.

    19. [19]

      G.H. Jiang, X. Li, Z. Wei, et al., Acta Metall. Sin. 28(2015) 460-466.  doi: 10.1007/s40195-015-0220-1

    20. [20]

      W. Tian, H. Zhang, H. Sun, et al., Adv. Funct. Mater. 26(2016) 8651-8661.  doi: 10.1002/adfm.201603937

    21. [21]

      Q. Lai, N. Yang, G. Yuan, Electrochem. Commun. 83(2017) 24-27.  doi: 10.1016/j.elecom.2017.08.015

    22. [22]

      C.W. Li, J. Ciston, M.W. Kanan, Nature 508(2014) 504-507.  doi: 10.1038/nature13249

    23. [23]

      X. Li, W. Bi, M. Chen, et al., J. Am. Chem. Soc. 139(2017) 14889-14892.  doi: 10.1021/jacs.7b09074

  • 加载中
    1. [1]

      Gao TengfeiKumar AnujShang ZhichengDuan XinxuanWang HangchaoWang ShiyuanJi ShengfuYan DongpengLuo LiangLiu WenSun Xiaoming . Promoting electrochemical conversion of CO2 to formate with rich oxygen vacancies in nanoporous tin oxides. Chinese Chemical Letters, 2019, 30(12): 2274-2278. doi: 10.1016/j.cclet.2019.07.028

    2. [2]

      Yang YanZhang YunHu Jin-SongWan Li-Jun . Progress in the Mechanisms and Materials for CO2 Electroreduction toward C2+ Products. Acta Physico-Chimica Sinica, 2020, 36(1): 1906085-0. doi: 10.3866/PKU.WHXB201906085

    3. [3]

      Wang TingtingYang JianChen JiayiHe QinggangLi ZhongjianLei LechengLu JianguoLeung Michael K. H.Yang BinHou Yang . Nitrogen-doped carbon nanotube-encapsulated nickel nanoparticles assembled on graphene for efficient CO2 electroreduction. Chinese Chemical Letters, 2020, 31(6): 1438-1442. doi: 10.1016/j.cclet.2020.04.056

    4. [4]

      Shaosong Ding Tong Yue Xingpu Wang Jianan Gao Ying Zhu . Ni-N Doped Porous Carbon for Electrocatalytic Reduction of CO2 into CO Driven by Solar Energy. University Chemistry, 2020, 35(4): 1-9. doi: 10.3866/PKU.DXHX201912044

    5. [5]

      Xiao KangWang XinxingWu XiaofeiQi XingzhenSu HaixiaZhong Liangshu . Reductive Loading of Noble Metal Nanoparticles on Layered Double Hydroxide with Interlayer Anion as Reductant. Chemistry, 2018, 81(4): 332-338.

    6. [6]

      Jiaqi Shao Yi Wang Dunfeng Gao Ke Ye Qi Wang Guoxiong Wang . Copper-indium bimetallic catalysts for the selective electrochemical reduction of carbon dioxide. Chinese Journal of Catalysis, 2020, 41(9): 1393-1400. doi: 10.1016/S1872-2067(20)63577-X

    7. [7]

      Yishu Fu Yanan Li Xia Zhang Yuyu liu Xiaodong Zhou Jinli Qiao . Electrochemical CO2 reduction to formic acid on crystalline SnO2 nanosphere catalyst with high selectivity and stability. Chinese Journal of Catalysis, 2016, 37(7): 1081-1088. doi: 10.1016/S1872-2067(15)61048-8

    8. [8]

      LI Xiao-JinSHENG Jia-YiCHEN Hai-HangXU Yi-Ming . Improved Photocatalytic Degradation of Phenol over β-Bi2O3 Modified Bi2WO6 and Possible Mechanism. Acta Physico-Chimica Sinica, 2015, 31(3): 540-544. doi: 10.3866/PKU.WHXB201501131

    9. [9]

      YUAN Zhong-ZhiZHOU Zhen-TaoLI Wei-Shan . Cyclic Voltammetric Performance of Bi2O3 Particles on Abrasive Microelectrode. Chinese Journal of Applied Chemistry, 2004, 21(3): 251-255.

    10. [10]

      WANG Jun-ZhenFU Xi-XianYANG Qiu-HuBAI Shu-LinSUN Yi-Huan . Photocatalytic Activity of Bi2O3on the Decoloration of Dyes. Chinese Journal of Applied Chemistry, 2002, 19(5): 483-485.

    11. [11]

      Zhou Wuzong . NEW MATERIAL FOR OXYGEN SENSOR——β-Bi2O3-RELATED SOLID SOLUTIONS. Chinese Journal of Applied Chemistry, 1989, 6(6): 61-63.

    12. [12]

      GAO Xiao-MingSHANG Yan-YanLIU Li-BoGAO Kai-Long . Preparation and Photocatalytic Nitrogen Fixation Performance of Cd Doping δ-Bi2O3 Nanosheets. Chinese Journal of Inorganic Chemistry, 2019, 35(4): 580-588. doi: 10.11862/CJIC.2019.092

    13. [13]

      Ying Na Cui Jing Mei Yin Da Bin Gao Ying Ping Jia Guang Yun Zhou Shen Min Li . Photopromoted methoxycarbonylation of olefin with methyl formate by Co(OAc)2. Chinese Chemical Letters, 2007, 18(1): 17-20. doi: 10.1016/j.cclet.2006.11.021

    14. [14]

      Chen JunZhan JingZhang YumengTang Yiwei . Construction of a novel ZnCo2O4/Bi2O3 heterojunction photocatalyst with enhanced visible light photocatalytic activity. Chinese Chemical Letters, 2019, 30(3): 735-738. doi: 10.1016/j.cclet.2018.08.020

    15. [15]

      SHAN ShuangYANG Zhan-Xu . Preparation and Performance of Four Angle Star-like BiVO4/Bi2O3 Catalyst. Chinese Journal of Inorganic Chemistry, 2016, 32(4): 649-654. doi: 10.11862/CJIC.2016.076

    16. [16]

      SONG QiangLi LILUO Hong-XiangLIU YueYANG Chang-Long . Hierarchical Nanoflower-Ring Structure Bi2O3/(BiO)2CO3 Composite for Photocatalytic Degradation of Rhodamine B. Chinese Journal of Inorganic Chemistry, 2017, 33(7): 1161-1171. doi: 10.11862/CJIC.2017.139

    17. [17]

      XIAO MiYANG ZhaoZHONG Xiao-RongXI Fang-Fang . Influence of Bi2O3 on the Structure and Dielectric Properties of Ag(Nb0.8Ta0.2)O3 Ceramics. Chinese Journal of Inorganic Chemistry, 2014, 30(3): 649-653. doi: 10.11862/CJIC.2014.054

    18. [18]

      DAI Gao-PengLIU Su-QinPENG RongLUO Tian-Xiong . Fabrication of Bi2O3/Bi2O3 Nanotube Arrays with High Visible-Light Photocatalytic Activity by Impregnation-Decomposition Method. Acta Physico-Chimica Sinica, 2012, 28(09): 2169-2174. doi: 10.3866/PKU.WHXB201207041

    19. [19]

      LU YuangangYANG YingchunLIU ShengyuYE Zhixiang . Photocatalytic Degradation of 2, 4-Dichlorophenol under Visible-light Irradiation Using Nitrogen-doped Bi2O3 Photocatalyst. Chinese Journal of Applied Chemistry, 2012, 29(9): 1023-1029. doi: 10.3724/SP.J.1095.2012.00479

    20. [20]

      Suiqi HanJia LiKailun YangJun Lin . Fabrication of a β-Bi2O3/BiOI heterojunction and its efficient photocatalysis for organic dye removal. Chinese Journal of Catalysis, 2015, 36(12): 2119-2126. doi: 10.1016/S1872-2067(15)60974-3

Metrics
  • PDF Downloads(5)
  • Abstract views(137)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return