Citation: Zhenyu Yao, Xing Lin, Remi Chauvin, Lianhui Wang, Emmanuel Gras, Xiuling Cui. Phosphine-phosphonium ylides as ligands in palladium-catalysed C2-H arylation of benzoxazoles[J]. Chinese Chemical Letters, ;2020, 31(12): 3250-3254. doi: 10.1016/j.cclet.2020.04.008 shu

Phosphine-phosphonium ylides as ligands in palladium-catalysed C2-H arylation of benzoxazoles

    *Corresponding author.
    **Laboratory of Coordination Chemistry (LCC) CNRS & Universite' de Toulouse (UPS INP) Toulouse 31077 Cedex 4 France
    E-mail addresses: chauvin@lcc-toulouse.fr (R. Chauvin) cuixl@hqu.edu.cn (X. Cui).
  • Received Date: 5 March 2020
    Revised Date: 29 March 2020
    Accepted Date: 29 March 2020
    Available Online: 15 December 2020

Figures(3)

  • As balanced electron-rich P, C-chelating ligands, phosphine-phosphonium-ylides are considered for their ability to in situ promote palladium-catalysed direct C(sp2)-H arylation. Using methyl phosphonium salts of 2, 2'-bis(diphenylphosphino)-1, 1'-binaphtyl ("methyl-BINAPIUM") as ylide precursors under optimized reaction conditions, arylation of benzoxazole was found to proceed in moderate to high yield to give functional 2-aryl benzoxazoles. A strong anion effect of the non-salt free ylide was evidenced (TfO- > I- > PF6- ≈ salt-free). This first example of phosphonium ylides as ligands in catalytic C-H activation extends the prospect of their general implementation in homogeneous transition metal catalysis.
  • 加载中
    1. [1]

      (a) R.A. Hughes, C.J. Moody, Angew. Chem. Int. Ed. 46(2007) 7930-7954;
      (b) I. Osaka, R.D. McCullough, Acc. Chem. Res. 41(2008) 1202-1241.

    2. [2]

      (a) C.A. Tolman, Chem. Rev. 77(1977) 313-348;
      (b) A.F. Littke, G.C. Fu, Angew. Chem. Int. Ed. 37(1998) 3387-3388.

    3. [3]

      (a) M. Scholl, S. Ding, C.W. Lee, et al., Org. Lett. 1(1999) 953-956;
      (b) W.A. Herrmann, Angew. Chem. Int. Ed. 41(2002) 1290-1309;
      (c) M.C. Jahnke, F.E. Hahn, Top. Organomet. Chem. 30(2010) 95-129.

    4. [4]

      J. Pedroni, N. Cramer, Chem. Commun. 51(2015) 17647-17657.  doi: 10.1039/C5CC07929B

    5. [5]

      (a) K. Xiao, D. Lin, M. Miura, et al., J. Am. Chem. Soc. 136(2014) 8138-8142;
      (b) P. Shen, L. Hu, Q. Shao, et al., J. Am. Chem. Soc. 140(2018) 6545-6549;
      (c) Q. Shao, J. He, Q. Wu, et al., ACS Catal. 7(2017) 7777-7782;
      (d) C. Pi, Y. Li, X.L. Cui, et al., Chem. Sci. 4(2013) 2675-2679;
      (e) D. Gao, Q. Gu, S.L. You, J. Am. Chem. Soc. 138(2016) 2544-2547;
      (f) J. Wu, X.L. Cui, L. Chen, et al., J. Am. Chem. Soc. 131(2009) 13888-13889.

    6. [6]

      Y. Li, X. Yu, Y. Wang, et al., Organometallics 37(2018) 979-988.  doi: 10.1021/acs.organomet.8b00005

    7. [7]

      (a) Z. Yang, X. Lin, L.H. Wang, et al., Org. Chem. Front. 4(2017) 2179-2183;
      (b) C.S. Kuai, L.H. Wang, H. Cui, et al., ACS Catal. 6(2015) 186-190;
      (c) L.H. Wang, D. Xiong, L.H. Jie, et al., Chin. Chem. Lett. 29(2018) 907-910;
      (d) T. Wan, S.D. Du, C. Pi, et al., ChemCatChem 11(2019) 3791-3796;
      (e) X. Mi, Y. Kong, J. Zhang, et al., Chin. Chem. Lett. 30(2019) 2295-2298;
      (f) Y. He, C. Pi, Y. Wu, et al., Chin. Chem. Lett. 31(2020) 396-400.

    8. [8]

      (a) H. Schmidbaur, Angew. Chem. Int. Ed. 22(1983) 907-927;
      (b) Y. Canac, C. Lepetit, M. Abdalilah, et al., J. Am. Chem. Soc.130(2008) 8406-8413;
      (c) E.P. Urriolabeitia, Top. Organomet. Chem. 130(2010) 15-48;
      (d) T. Scherpf, R. Wirth, K.S. Feichtner, et al., Angew. Chem. Int. Ed. 54(2015) 8542-8546;
      (e) C. Lepetit, V. Maraval, Y. Canac, et al., Coord. Chem. Rev. 308(2016) 59-75;
      (f) E. Serrano, T. Soler, E.P. Urriolabeitia, Eur. J. Inorg. Chem. 2017(2017) 2220-2230;
      (g) L.T. Scharf, V.H. Gessner, Inorg. Chem. 56(2017) 8599-8607;
      (h) V.H. Gessner, Struct. Bond. 177(2018) 117-157.

    9. [9]

      (a) R. Zurawinski, B. Donnadieu, M. Mikolajczyk, et al., J. Organomet. Chem. 689(2004) 380-386;
      (b) Y. Canac, C. Duhayon, R. Chauvin, Angew. Chem. Int. Ed. 46(2007) 6313-6315.

    10. [10]

      R. Zurawinski, R. Donnadieu, M. Mikolajczyk, et al., Organometallics 22(2003) 4810-4817.  doi: 10.1021/om030343g

    11. [11]

      L. Arnedo, R. Chauvin, A. Poater, Catalysts 7(2017) 1-12.

    12. [12]

      (a) P. Leglaye, B. Donnadieu, J.J. Brunet, R. Chauvin, Tetrahedron Lett. 39(1998) 9179-9182;
      (b) M. Soleilhavoup, L. Viau, G. Commenges, et al., Eur. J. Inorg. Chem. (2003) 207-212.

    13. [13]

      (a) L. Viau, C. Lepetit, G. Commenges, et al., Organometallics 20(2001) 808-810;
      (b) C. Canal, C. Lepetit, M. Soleilhavoup, et al., Affinidad 61(2004) 298-303.

    14. [14]

      (a) T. Ohta, T. Fujii, N. Kurahashi, et al., Sci. Eng. Rev. Doshisha Univ. 39(1998) 133-141;
      (b) T. Ohta, H. Sasayama, O. Nakajima, et al., TetrahedronAsymmetry 14(2003) 537-542.

    15. [15]

      (a) T. Scherpf, R. Wirth, S. Molitor, et al., Angew. Chem. Int. Ed. 54(2015) 8542-8546;
      (b) L.T. Scharf, V.H. Gessner, Inorg. Chem. 56(2017) 8599-8607.

    16. [16]

      (a) R.F. Heck, J. Am. Chem. Soc. 90(1968) 5518-5526;
      (b) T. Mizoroki, K. Mori, A. Ozaki, Bull. Chem. Soc. Jpn. 44(1971) 581-583;
      (c) A. Jutand, Introduction, in: M. Oestreich (Ed.), The Mizoroki-Heck Reaction, John Wiley & Sons, 2009, pp. 1-50;
      (d) Y.P. Wang, H.M. Lee, J. Organomet. Chem. 791(2015) 90-98.

    17. [17]

      (a) J.C. Lewis, J. Wu, R.G. Bergman, et al., Angew. Chem. Int. Ed. 45(2006) 1589-1591;
      (b) H.Q. Do, O. Daugulis, J. Am. Chem. Soc. 129(2007) 12404-12405;
      (c) J.C. Lewis, A.M. Berman, R.G. Bergman, et al., J. Am. Chem. Soc. 130(2008) 2493-2500;
      (d) D. Zhao, W. Wang, F. Yang, et al., Angew. Chem. Int. Ed. 48(2009) 3296-3300.

    18. [18]

      C.S. Demmer, L. Bunch, J. Med. Chem. 97(2015) 778-785.  doi: 10.1016/j.ejmech.2014.11.064

    19. [19]

      S. Abdeen, T. Kunkle, N. Salim, et al., J. Med. Chem. 61(2018) 7345-7357.  doi: 10.1021/acs.jmedchem.8b00989

    20. [20]

      C.J. Smith, A. Ali, L. Chen, et al., Bioorg. Med. Chem. Lett. 20(2010) 346-349.  doi: 10.1016/j.bmcl.2009.10.099

    21. [21]

      R. Duroux, L. Agouridas, N. Renault, et al., Eur. J. Med. Chem. 144(2018) 151-163.  doi: 10.1016/j.ejmech.2017.12.007

    22. [22]

      S.M. Johnson, S. Connelly, I.A. Wilson, et al., J. Med. Chem. 51(2008) 260-270.  doi: 10.1021/jm0708735

    23. [23]

      X. Wang, M. Cui, J. Jia, et al., Eur. J. Med. Chem. 89(2015) 331-339.  doi: 10.1016/j.ejmech.2014.10.046

    24. [24]

      C. Carayon, S. Fery-Forgues, Photochem. Photobiol. Sci. 16(2017) 1020-1035 and references therein.  doi: 10.1039/C7PP00112F

    25. [25]

      A. Poveda, I. Alonso, M.A. Fernandez-Ibanez, Chem. Sci. 5(2014) 3873-3882.  doi: 10.1039/C4SC00848K

    26. [26]

      P.A. Byrne, D.G. Gilheany, J. Am. Chem. Soc. 134(2012) 9225-9239 and references therein.  doi: 10.1021/ja300943z

    27. [27]

      (a) T. Hayashida, H. Kondo, J.I. Terasawa, et al., J. Organomet. Chem. 692(2007) 382-394;
      (b) V.J. Argyle, L.M. Woods, M. Roxburgh, et al., CrystEngComm 15(2013) 120-134.

    28. [28]

      (a) H.M. Senn, T. Ziegler, Organometallics 23(2004) 2980-2988;
      (b)L.J. Gooßen, D. Koley, H.L.Hermann, etal., Organometallics 24(2005)2398-2410.

    29. [29]

      R. Chauvin, Eur. J. Inorg. Chem. 2000(2000) 577-591.

    30. [30]

      X. Ren, P. Wen, X. Shi, et al., Org. Lett. 15(2013) 5194-5197.  doi: 10.1021/ol402262c

    31. [31]

      A.N. Cammidge, K.V.L. Crepy, Chem. Commun. 36(2000) 1723-1724.

  • 加载中
    1. [1]

      Dan Xu Zhi Hua Liu Wei Jun Tang Jun Mo Li Jin Xu . Palladium-catalyzed highly regioselective Heck reaction of aryl nonaflates with electron-rich olefins. Chinese Chemical Letters, 2008, 19(9): 1017-1020. doi: 10.1016/j.cclet.2008.06.004

    2. [2]

      Sheng WanleLv FanTang BingHao ErhongJiao Lijuan . Toward the most versatile fluorophore: Direct functionalization of BODIPY dyes via regioselective C-H bond activation. Chinese Chemical Letters, 2019, 30(10): 1825-1833. doi: 10.1016/j.cclet.2019.08.004

    3. [3]

      Wang ShaofanZhao QipengWang GuodongWang KaiXia Chengcai . Palladium-Catalyzed Direct o-Nitrification of Azobenzenes with Co(NO3)2·6H2O via C-H Activation. Chinese Journal of Organic Chemistry, 2018, 38(7): 1849-1854. doi: 10.6023/cjoc201711041

    4. [4]

      Zou HongyanWang Zhong-LiangCao YangHuang Genping . Mechanism of rhodium(Ⅲ)-catalyzed formal C(sp3)-H activation/spiroannulation of α-arylidene pyrazolones with alkynes:A computational study. Chinese Chemical Letters, 2018, 29(9): 1355-1358. doi: 10.1016/j.cclet.2017.10.034

    5. [5]

      Wang ZhenrongXie PeipeiXia Yuanzhi . Recent progress in Ru(Ⅱ)-catalyzed C-H activations with oxidizing directing groups. Chinese Chemical Letters, 2018, 29(1): 47-53. doi: 10.1016/j.cclet.2017.06.018

    6. [6]

      Jun DingYing GuoLing-Yan ShaoFei-Yi ZhaoDao-Hua LiaoHong-Wei LiuYa-Fei Ji . Palladium-catalyzed multi-acetoxylation of 1,3-disubstituted 1H-pyrazole-5-carboxylates via direct C(sp2)-H or C(sp3)-H bond activation. Chinese Chemical Letters, 2016, 27(10): 1617-1621. doi: 10.1016/j.cclet.2016.04.007

    7. [7]

      Hong-Ying NiuLing-Yun SuShi-Xia BaiJian-Ping LiXi-Lan FengHai-Ming Guo . Synthesis of C8-alkyl-substituted purine analogues by direct alkylation of 8-H purines with tetrahydrofuran catalyzed by CoCl2·6H2O. Chinese Chemical Letters, 2017, 28(1): 105-108. doi: 10.1016/j.cclet.2016.06.009

    8. [8]

      Wu ZiliMullins David R.Allard Lawrence F.Zhang QianfanWang Laisheng . CO oxidation over ceria supported Au22 nanoclusters: Shape effect of the support. Chinese Chemical Letters, 2018, 29(6): 795-799. doi: 10.1016/j.cclet.2018.01.038

    9. [9]

      Zhao SenLi ChunpuXu BinLiu Hong . Cp*Rh(Ⅲ)-Catalyzed C—H 3, 3-Difluoroallylation of Indoles and N-Iodosuccinimide-Mediated Cyclization for the Synthesis of Fluorinated 3, 4-Dihydropyrimido-[1, 6-a]-indol-1(2H)-one Derivatives. Chinese Journal of Organic Chemistry, 2020, 40(6): 1549-1562. doi: 10.6023/cjoc202004039

    10. [10]

      iang LeiXYang KaiSong Qiu-Ling . Pd-catalyzed ortho-olefination of aromatic acetyl esters. Chinese Chemical Letters, 2017, 28(3): 517-520. doi: 10.1016/j.cclet.2016.11.023

    11. [11]

      Zhang YongYang hongzhenYu XinlingCheng XuLi WeijianGuo LingmeiHai LiGuo LiWu Yong . Room Temperature Ru(Ⅲ)-Catalyzed ortho-Hydroxymethylation of Arenes. Chinese Journal of Organic Chemistry, 2018, 38(12): 3211-3218. doi: 10.6023/cjoc201805022

    12. [12]

      Wang YunlongZhang LinbaoNiu JunlongSong Maoping . Copper-Promoted Direct Nitration of Arenes Assisted by an N, O-Bidentate Directing System. Chinese Journal of Organic Chemistry, 2019, 39(6): 1761-1766. doi: 10.6023/cjoc201901015

    13. [13]

      Feng YadongZhang ZhenyueQi FuYao QiuhongHuang HuabinShen JinhaiCui Xiuling . Ir-catalyzed regiospecific mono-sulfamidation of arylquinazolinones. Chinese Chemical Letters, 2020, 31(1): 58-60. doi: 10.1016/j.cclet.2019.05.013

    14. [14]

      Li HuaiguiYang PengXu ZhengDu ZhengyinFu Ying . Cu-Catalyzed Direct Arylation of Benzothiazoles with Diaryliodonium Salts. Chinese Journal of Organic Chemistry, 2020, 40(8): 2476-2482. doi: 10.6023/cjoc202002042

    15. [15]

      Zisong QiXingwei Li . Rh(III)-catalyzed C-H activation of benzamides: Coupling with quinones. Chinese Journal of Catalysis, 2015, 36(1): 48-56. doi: 10.1016/S1872-2067(14)60245-X

    16. [16]

      Qian ShaopingMa YaoruiGao ShanshanLuo Junfei . Recent Progress on the Synthesis of Phenols through C-H Hydroxylation of Aromatics. Chinese Journal of Organic Chemistry, 2018, 38(8): 1930-1939. doi: 10.6023/cjoc201803022

    17. [17]

      Luo Feihua . Progress in Transition Metal Catalyzed C-H Functionalization Directed by Carboxyl Group. Chinese Journal of Organic Chemistry, 2019, 39(11): 3084-3104. doi: 10.6023/cjoc201905027

    18. [18]

      Wang ShanYan FengWang LianshengZhu Lei . Recent Advances in Directing Group-Induced C-H Activation Reactions. Chinese Journal of Organic Chemistry, 2018, 38(2): 291-303. doi: 10.6023/cjoc201708055

    19. [19]

      Luo FeihuaLong YangLi ZhengkaiZhou Xiangge . Palladium Catalyzed Arylation of C(sp3)-H Bonds of Carbonyl β-position in Water. Acta Chimica Sinica, 2016, 74(10): 805-810. doi: 10.6023/A16060316

    20. [20]

      Yang Qi-LiangWang Xiang-YangWeng Xin-JunYang XiangXu Xue-TaoTong XiaofengFang PingWu Xin-YanMei Tian-Sheng . Palladium-Catalyzed ortho-Selective C-H Chlorination of Arenes Using Anodic Oxidation. Acta Chimica Sinica, 2019, 77(9): 866-873. doi: 10.6023/A19040135

Metrics
  • PDF Downloads(1)
  • Abstract views(82)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return