Citation: Li Qian, Lu Xiaoyun. New antituberculosis drugs targeting the respiratory chain[J]. Chinese Chemical Letters, ;2020, 31(6): 1357-1365. doi: 10.1016/j.cclet.2020.04.007 shu

New antituberculosis drugs targeting the respiratory chain

    * Corresponding author.
    E-mail address: luxy2016@jnu. edu. cn (X. Lu).
  • Received Date: 5 March 2020
    Revised Date: 31 March 2020
    Accepted Date: 31 March 2020
    Available Online: 1 June 2020

Figures(14)

  • With the emergence of multidrug-resistant tuberculosis and extensive drug-resistant tuberculosis strains, there is an urgent need to develop novel drugs for the treatment of tuberculosis. The respiratory chain is a promising target for the development of new antimycobacterial agents, and a growing number of compounds have been reported and some have entered clinical trials. In this review, we summarize the main features and the electron transfer process of the mycobacterial respiratory chain, and the recent progress in the search for new small molecule inhibitors targeting the three main potential targets in the respiratory chain of Mycrobacterium tuberculosis. Our emphasis is on the optimization strategy of QcrB inhibitors and the challenges of developing QcrB inhibitors as antituberculosis drugs due to the alternate bd-type oxidase oxidative compensation pathway are discussed.
  • 加载中
    1. [1]

      T. Wirth, F. Hildebrand, C. Allix-Beguec, et al., PLoS Pathog4 (2008)e1000160.  doi: 10.1371/journal.ppat.1000160

    2. [2]

      World Health Organization, Global Tuberculosis Report 2019 (WHO), https://www.who.int/tb/publications/global_report/en/.

    3. [3]

      L. Pitance, L. Vecellio, T. Leal, et al., J. Aerosol. Med. Pulm. D. 23 (2010) 389-396.  doi: 10.1089/jamp.2010.0816

    4. [4]

      K. Andries, P. Verhasselt, J. Guillemont, et al., Science 307 (2005) 223-227.  doi: 10.1126/science.1106753

    5. [5]

      A. H. Diacon, P. R. Donald, A. Pym, et al., Antimicrob Agents Ch. 56 (2012) 3271-3276.  doi: 10.1128/AAC.06126-11

    6. [6]

      E. Cox, K. Laessig, N. Engl. J. Med. 371 (2014) 689-691.  doi: 10.1056/NEJMp1314385

    7. [7]

      M. T. Gler, V. Skripconoka, E. Sanchez-Garavito, et al., N. Engl. J. Med. 366 (2012) 2151-2160.  doi: 10.1056/NEJMoa1112433

    8. [8]

      C. D. Tweed, R. Dawson, D. A. Burger, et al., Lancet Respir. Med. 7 (2019) 1048-1058.  doi: 10.1016/S2213-2600(19)30366-2

    9. [9]

      C. G. Mohan, Impact of Target-Based Drug Design in Anti-bacterial Drug Discovery for the Treatment of Tuberculosis, Springer, 2019, pp. 307-346.

    10. [10]

      K. Mdluli, T. Kaneko, A. Upton, Cold Spring Harb. Perspect. Med. 5 (2015) a021154.  doi: 10.1101/cshperspect.a021154

    11. [11]

      S. L. Tran, G. M. Cook, J. Bacteriol. 187 (2005) 5023-5028.  doi: 10.1128/JB.187.14.5023-5028.2005

    12. [12]

      C. A. Kerantzas, W. R. Jacobs Jr., mBio 8 (2017) e01586-16.
       

    13. [13]

      G. Sotgiu, G. Sulis, A. Matteelli, Microbiol. Spectr. 5 (2017) TNMI7-0036-2016.
       

    14. [14]

      D. Bald, A. Koul, FEMS Microbiol. Lett. 308 (2010) 1-7.  doi: 10.1111/j.1574-6968.2010.01959.x

    15. [15]

      S. Kerscher, S. Dröse, V. Zickermann, U. Brandt, ResultsProbl. CellDiffer. 45 (2008) 185-222.
       

    16. [16]

      E. A. Weinstein, T. Yano, L. S. Li, et al., Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 4548-4553.  doi: 10.1073/pnas.0500469102

    17. [17]

      G. Unden, J. Bongaerts, Biochim. Biophys. Acta 1320 (1997) 217-234.  doi: 10.1016/S0005-2728(97)00034-0

    18. [18]

      S. P. S. Rao, S. Alonso, L. Rand, T. Dick, K. Pethe, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 11945-11950.  doi: 10.1073/pnas.0711697105

    19. [19]

      L. Miesel, T. R. Weisbrod, J. A. Marcinkeviciene, R. Bittman, W. R. Jacobs Jr., J. Bacteriol. 180 (1998) 2459-2467.  doi: 10.1128/JB.180.9.2459-2467.1998

    20. [20]

      D. Bald, C. Villellas, P. Lu, A. Koul, mBio 8 (2017) e00272-17.
       

    21. [21]

      C. Pidathala, R. Amewu, B. Pacorel, et al., J. Med. Chem. 55 (2012) 1831-1843.

    22. [22]

      R. Cox, G. Cook, Curr. Mol. Med. 7 (2007) 231-245.  doi: 10.2174/156652407780598584

    23. [23]

      L. G. Matsoso, B. D. Kana, P. K. Crellin, et al., J. Bacteriol. 187 (2005) 6300-6308.  doi: 10.1128/JB.187.18.6300-6308.2005

    24. [24]

      H. Gong, J. Li, A. Xu, et al., Science 362 (2018) eaat8923.  doi: 10.1126/science.aat8923

    25. [25]

      K. A. Abrahams, J. A. Cox, V. L. Spivey, et al., PLoS One 7 (2012) e52951.  doi: 10.1371/journal.pone.0052951

    26. [26]

      P. A. Mak, S. P. Rao, M. P. Tan, et al., ACS Chem. Biol. 7 (2012) 1190-1197.  doi: 10.1021/cb2004884

    27. [27]

      S. Kang, R. Y. Kim, M. J. Seo, et al., J. Med. Chem. 57 (2014) 5293-5305.
       

    28. [28]

      K. Pethe, P. Bifani, J. Jang, et al., Nat. Med. 19 (2014) 1157-1160.
       

    29. [29]

      V. B. Borisov, R. Murali, M. L. Verkhovskaya, et al., Proc. Natl. Acad. Sci. U. S. A. 108 (2011) 17320.  doi: 10.1073/pnas.1108217108

    30. [30]

      V. B. Borisov, R. B. Gennis, J. Hemp, M. I. Verkhovsky, Biochim. Biophys. Acta 1807 (2011) 1398-1413.  doi: 10.1016/j.bbabio.2011.06.016

    31. [31]

      L. Shi, C. D. Sohaskey, B. D. Kana, et al., Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 15629.  doi: 10.1073/pnas.0507850102

    32. [32]

      P. Lu, M. Heineke, A. Koul, et al., Sci. Rep. 5 (2015) 10333.  doi: 10.1038/srep10333

    33. [33]

      K. Arora, B. Ochoa-Montano, P. S. Tsang, et al., Antimicrob. Agents Chemother. 58 (2014) 6962-6965.  doi: 10.1128/AAC.03486-14

    34. [34]

      C. von Ballmoos, G. Cook, P. Dimroth, Ann. Rev. Biophys. 37 (2008) 43-64.  doi: 10.1146/annurev.biophys.37.032807.130018

    35. [35]

      D. Pogoryelov, O. Yildiz, J. D. Faraldo-Gomez, T. Meier, Nat. Struct. Mol. Biol. 16 (2009) 1068-1073.  doi: 10.1038/nsmb.1678

    36. [36]

      M. Diez, B. Zimmermann, M. Börsch, et al., Nat. Struct. Mol. Biol. 11 (2004) 135-141.  doi: 10.1038/nsmb718

    37. [37]

      H. Noji, R. Yasuda, M. Yoshida, K. Kinosita Jr., Nature 386 (1997) 299-302.  doi: 10.1038/386299a0

    38. [38]

      J. K. Hakulinen, A. L. Klyszejko, J. Hoffmann, et al., Proc. Natl. Acad. Sci. U. S. A. 109 (2012) e2050-2056.  doi: 10.1073/pnas.1203971109

    39. [39]

      A. C. Haagsma, I. Podasca, A. Koul, et al., PLoS One 6 (2011) e23575.  doi: 10.1371/journal.pone.0023575

    40. [40]

      A. Koul, N. Dendouga, K. Vergauwen, et al., Nat. Chem. Biol. 3 (2007) 323-324.  doi: 10.1038/nchembio884

    41. [41]

      D. Ordway, M. Viveiros, C. Leandro, et al., L. Antimicrob Agents Chemother. 47 (2003) 917-922.  doi: 10.1128/AAC.47.3.917-922.2003

    42. [42]

      S. Sellamuthu, M. Singh, A. Kumar, S. K. Singh, Expert. Opin. Ther. Tar. 21 (2017) 559-570.  doi: 10.1080/14728222.2017.1327577

    43. [43]

      M. Kaminska, Folia med Craco. 9 (1967) 115-143.
       

    44. [44]

      T. Yano, L. S. Li, E. Weinstein, J. S. Teh, H. Rubin, J. Biol. Chem. 281 (2006) 11456-11463.  doi: 10.1074/jbc.M508844200

    45. [45]

      M. Viveiros, S. Bosne-David, L. Amaral, Int. J. Antimicrob. Agents 16 (2000) 69-71.  doi: 10.1016/S0924-8579(00)00199-0

    46. [46]

      E. A. Dunn, M. Roxburgh, L. Larsen, et al., Bioorg. Med. Chem. 22 (2014) 5320-5328.  doi: 10.1016/j.bmc.2014.07.050

    47. [47]

      B. Lechartier, S. T. Cole, AntimicrobAgentsChemother 59 (2015) 4457-4463.
       

    48. [48]

      T. Yano, S. Kassovska-Bratinova, J. Teh, et al., J. Biol. Chem. 286 (2011) 10276-10287.  doi: 10.1074/jbc.M110.200501

    49. [49]

      J. H. Grosset, S. Tyagi, D. V. Almeida, et al., Am. J. Respir. Crit. Care Med. 188 (2013) 608-612.  doi: 10.1164/rccm.201304-0753OC

    50. [50]

      D. A. Lamprecht, P. M. Finin, M. A. Rahman, et al., Nat. Commun. 7 (2016) 12393-12393.  doi: 10.1038/ncomms12393

    51. [51]

      D. Zhang, Y. Lu, K. Liu, et al., J. Med. Chem. 55 (2012) 8409-8417.

    52. [52]

      D. Zhang, Y. Liu, C. Zhang, et al., Molecules 19 (2014) 4380-4394.  doi: 10.3390/molecules19044380

    53. [53]

      J. Xu, B. Wang, L. Fu, et al., Antimicrob. Agents Chemother. 63 (2019) e02155-02118.

    54. [54]

      P. Shirude, B. Paul, N. Choudhury, et al., ACS Med. Chem. Lett. 3 (2012) 736-740.  doi: 10.1021/ml300134b

    55. [55]

      M. B. Harbut, B. Yang, R. Liu, et al., Angew. Chem. Int. Ed. Engl. 57 (2018) 3478-3482.  doi: 10.1002/anie.201800260

    56. [56]

      G. C. Moraski, L. D. Markley, P. A. Hipskind, et al., ACS Med. Chem. Lett. 2 (2011) 466-470.  doi: 10.1021/ml200036r

    57. [57]

      Z. No, J. Kim, P. B. Brodin, et al., WO2011113606A1 (2011).
       

    58. [58]

      S. Kang, R. Y. Kim, M. J. Seo, et al., J. Med. Chem. 57 (2014) 5293-5305.
       

    59. [59]

      http://www.newtbdrug.org/pipeline/clinical.

    60. [60]

      N. P. Kalia, E. J. Hasenoehrl, N. B. Ab Rahman, et al., Proc. Natl. Acad. Sci. U. S. A. 114 (2017) 7426-7431.  doi: 10.1073/pnas.1706139114

    61. [61]

      P. Lu, A. Asseri, M. Kremer, et al., Sci. Rep. 8 (2018) 2625.  doi: 10.1038/s41598-018-20989-8

    62. [62]

      T. O'Malley, T. Alling, J. V. Early, et al., Antimicrob. Agents Chemother. 62 (2018) e02439-17.
       

    63. [63]

      G. C. Moraski, L. D. Markley, J. Cramer, et al., ACS Med. Chem. Lett. 4 (2013) 675-679.  doi: 10.1021/ml400088y

    64. [64]

      Y. Cheng, G. C. Moraski, J. Cramer, M. J. Miller, J. S. Schorey, PLoS One 9 (2014) e87483.  doi: 10.1371/journal.pone.0087483

    65. [65]

      G. C. Moraski, P. A. Miller, M. A. Bailey, et al., ACS Infect. Dis. 1 (2015) 85-90.

    66. [66]

      Z. Wu, Y. Lu, L. Li, et al., ACS Med. Chem. Lett. 7 (2016) 1130-1133.  doi: 10.1021/acsmedchemlett.6b00330

    67. [67]

      J. Tang, B. Wang, T. Wu, et al., ACS Med. Chem. Lett. 6 (2015) 814-818.  doi: 10.1021/acsmedchemlett.5b00176

    68. [68]

      X. Lu, J. Tang, Z. Liu, et al., Bioorg. Med. Chem. 26 (2016) 5916-5919.  doi: 10.1016/j.bmcl.2016.11.003

    69. [69]

      X. Lu, Z. Williams, K. Hards, et al., ACS Infect. Dis. 5 (2019) 239-249.  doi: 10.1021/acsinfecdis.8b00225

    70. [70]

      A. M. Upton, S. Cho, T. J. Yang, et al., Antimicrob. Agents Chemother. 59 (2015) 136-144.  doi: 10.1128/AAC.03823-14

    71. [71]

      X. Hu, B. Wan, Y. Liu, et al., ACS Med. Chem. Lett. 10 (2015) 295-299.

    72. [72]

      J. Rybniker, A. Vocat, C. Sala, et al., Nat. Commun. 6 (2015) 7659.  doi: 10.1038/ncomms8659

    73. [73]

      L. Ballell, R. H. Bates, R. J. Young, et al., ChemMedChem 8 (2013) 313-321.  doi: 10.1002/cmdc.201200428

    74. [74]

      C. S. Foo, A. Lupien, M. Kienle, et al., mBio. 9 (2018) e01276-18.

    75. [75]

      L. A. T. Cleghorn, P. C. Ray, J. Odingo, et al., J. Med. Chem. 61 (2018) 6592-6608.
       

    76. [76]

      R. van der Westhuyzen, S. Winks, C. R. Wilson, et al., J. Med. Chem. 58 (2015) 9371-9381.

    77. [77]

      N. S. Chandrasekera, T. Alling, M. A. Bailey, et al., J. Med. Chem. 58 (2015) 7273-7285.
       

    78. [78]

      A. E. M. B. Gregory, A. Harrison, M. Singh, et al., mSphere 4 (2019) e00606-19.

    79. [79]

      A. Lupien, C. S. Y. Foo, S. Savina, et al., PLoS Pathog. 16 (2020) e1008270.  doi: 10.1371/journal.ppat.1008270

    80. [80]

      L. Preiss, J. D. Langer, Ö. Yildiz, et al., Sci. Adv. 1 (2015) e1500106.  doi: 10.1126/sciadv.1500106

    81. [81]

      E. B. Chahine, L. R. Karaoui, H. Mansour, Ann. Pharmacother. 48 (2014) 107-115.  doi: 10.1177/1060028013504087

    82. [82]

      A. K. Kakkar, N. Dahiya, Tuberculosis (Edinb) 94 (2014) 357-362.  doi: 10.1016/j.tube.2014.04.001

    83. [83]

      H. Patel, R. Pawara, K. Pawara, et al., Tuberculosis (Edinb) 117 (2019) 79-84.  doi: 10.1016/j.tube.2019.06.005

    84. [84]

      J. Guillemont, C. Meyer, A. Poncelet, X. Bourdrez, K. Andries, Future Med. Chem. 3 (2011) 1345-1360.  doi: 10.4155/fmc.11.79

    85. [85]

      A. S. T. Tong, P. J. Choi, A. Blaser, et al., ACS Med. Chem. Lett. 8 (2011) 1019-1024.

    86. [86]

      P. J. Choi, H. S. Sutherland, A. S. T. Tong, et al., Bioorg. Med. Chem. 27 (2017) 5190-5196.  doi: 10.1016/j.bmcl.2017.10.042

    87. [87]

      H. S. Sutherland, A. S. T. Tong, P. J. Choi, et al., Bioorg. Med. Chem. 26 (2018) 1797-1809.  doi: 10.1016/j.bmc.2018.02.026

    88. [88]

      A. Blaser, H. S. Sutherland, A. S. T. Tong, et al., Bioorg. Med. Chem. 27 (2019) 1283-1291.  doi: 10.1016/j.bmc.2019.02.025

    89. [89]

      H. S. Sutherland, A. S. T. Tong, P. J. Choi, et al., Bioorg. Med. Chem. 27 (2019) 1292-1307.  doi: 10.1016/j.bmc.2019.02.026

    90. [90]

      H. S. Sutherland, A. S. T. Tong, P. J. Choi, et al., Bioorg. Med. Chem. 28 (2020) 115213.  doi: 10.1016/j.bmc.2019.115213

    91. [91]

      J. P. Sarathy, P. Ragunathan, J. Shin, et al., Antimicrob. Agents Chemother. 63 (2019) e01191-01119.

    92. [92]

      S. J. Tantry, S. D. Markad, V. Shinde, et al., J. Med. Chem. 60 (2017) 1379-1399.

    93. [93]

      S. Kumar, R. Mehra, S. Sharma, et al., Tuberculosis (Edinb). 108 (2018) 56-63.  doi: 10.1016/j.tube.2017.10.008

    94. [94]

      S. Singh, K. K. Roy, S. R. Khan, et al., Bioorg. Med. Chem. 23 (2015) 742-752.  doi: 10.1016/j.bmc.2014.12.060

  • 加载中
    1. [1]

      JIA Yi XU Youqian FENG Xiyun LI Yue LI Guangle LI Junbai . Co-assembly of Molecular Motors ATP synthase and Photosystem II based Photosynthesis. Chinese Journal of Catalysis, 2019, 40(s1): 143-148.

    2. [2]

      Fu Yuan-HuiLiu Ya-RuZheng Yan-PengJiang NanYue-Ying-JiaoLi WeiPeng Xiang-LeiHe Jin-Sheng . An RNA polymerase I-driven human respiratory syncytial virus minigenome as a tool for quantifying virus titers and screening antiviral drug. Chinese Chemical Letters, 2017, 28(1): 131-135. doi: 10.1016/j.cclet.2016.06.018

    3. [3]

      Fei Ma Gang LÜ Wei Fen Zhou Qiu Juan Wang Yi Hua Zhang Qi Zheng Yao . Synthesis and biological evaluation of 2,4-diaminopteridine derivatives as nitric oxide synthase inhibitor. Chinese Chemical Letters, 2009, 20(4): 420-422. doi: 10.1016/j.cclet.2008.12.012

    4. [4]

      Xue Yi LE Fu Hai WU Fen Yun SONG Liang Nian JI . THE STACKING INERACTION OF TERNARY COMPLEXES OF Zn(ATP)2- AND PYRIDINE-LIKELIGANDS. Chinese Chemical Letters, 1995, 6(9): 801-804.

    5. [5]

      Wu YingWen JiaLi HongjuanSun ShiguoXu Yongqian . Fluorescent probes for recognition of ATP. Chinese Chemical Letters, 2017, 28(10): 1916-1924. doi: 10.1016/j.cclet.2017.09.032

    6. [6]

      Liu Yunna . THERMODYNAMIC STUDIES OF THE FORMATION FOR ADENOSINE TRIPHOSPHATE COMPLEXES WITH MAGNESIUM ION AND CALCIUM ION. Acta Physico-Chimica Sinica, 1987, 3(05): 529-533. doi: 10.3866/PKU.WHXB19870516

    7. [7]

      Chen QiZhang Ji-WeiChen Lu-LuYang JunYang Xin-LingLing YunYang Qing . Design and synthesis of chitin synthase inhibitors as potent fungicides. Chinese Chemical Letters, 2017, 28(6): 1232-1237. doi: 10.1016/j.cclet.2017.03.030

    8. [8]

      YANG Ming-mingLIU Yong-zhuoJIA Wei-huaHU Xiu-deGUO Qing-jie . Preparation and performance of the Fe2O3/ATP oxygen carriers in coal chemical looping combustion. Journal of Fuel Chemistry and Technology, 2015, 43(2): 167-176.

    9. [9]

      Chun-Xian HeHui MengXiang ZhangHua-Qing CuiDa-Li Yin . Synthesis and bio-evaluation of phenothiazine derivatives as new antituberculosis agents. Chinese Chemical Letters, 2015, 26(8): 951-954. doi: 10.1016/j.cclet.2015.03.027

    10. [10]

      Wei CHEN Yu Sheng JIANG Hua HUO Hong Ming YUAN Jie Sheng CHEN . Synthesis of a Chain Aluminophosphate Containing Racemic 1, 2-Diaminopropane. Chinese Chemical Letters, 2002, 13(5): 474-477.

    11. [11]

      Zeng Li SONG Jun Dong ZHANG Li He ZHANG . SYNTHESIS OF ADENOSINE DERIVATIVES WITH CARBOXYALKYL SIDE CHAIN AT 2',3'OR 5'POSITION. Chinese Chemical Letters, 1993, 4(12): 1053-1056.

    12. [12]

      Ming Sheng Feng Ping Guo Li Xun Jiang Jing Bo Shi Yu Ping Cao Qi Zheng Yao . Synthesis of novel methotrexate derivatives with inhibition activity of nitric oxide synthase. Chinese Chemical Letters, 2009, 20(2): 178-180. doi: 10.1016/j.cclet.2008.10.027

    13. [13]

      Lei LI Feng LIU Xiang Xu KONG Shun SU Ke An LI . Liquid-liquid Extraction System Based on Non-ionic Surfactant-salt-H2O and Mechanism of Drug Extraction. Chinese Chemical Letters, 2002, 13(4): 349-350.

    14. [14]

      YAN Xiao-LinGUO Hai-FuYAN PengZHU Jia-MinWANG YingTAN Jia-MeiDING MinZHENG Yong-Rui . Synthesis, Characterization and Drug Delivery of a Water-Stable and Methyl-Functionalized 2D Zinc(Ⅱ) Metal-Organic Framework. Chinese Journal of Inorganic Chemistry, 2019, 35(7): 1267-1274. doi: 10.11862/CJIC.2019.137

    15. [15]

      ZHANG HuiYUAN Guo-JunLIU Shao-XianDUAN Hai-Bao . Two [Ni(dmit)2]- Compounds Showing Layered and Chain Alignments: Crystal Structures and Magnetic Properties. Chinese Journal of Structural Chemistry, 2016, 35(2): 271-278. doi: 10.14102/j.cnki.0254-5861.2011-0833

    16. [16]

      ZHANG HuiYUAN Guo-JunLIU Shao-XianDUAN Hai-Bao . Two [Ni(dmit)2]- Compounds Showing Layered and Chain Alignments: Crystal Structures and Magnetic Properties. Chinese Journal of Structural Chemistry, 2016, 35(2): 271-278. doi: 10.14102/j.cnki.0254-5861.2011-0833

    17. [17]

      Shui Quan DENG Hong Hui ZHUANG Ding Ming WU Jin Ling BUANG . A NEW TYPE OF CHAIN COMPOUND,STRUCTURE OF TA4(TE2)4TE4I. Chinese Chemical Letters, 1993, 4(3): 273-274.

    18. [18]

      Ju Lin LIU Pei Hua MA Guan Cheng CHEN . PRODUCTION OF VINYL CHLORIDE IN THE INFRARED LASER INDUCED PHOTOSENSITIZED CHAIN REACTION OF 1, 2-DICHLOROETHANE. Chinese Chemical Letters, 1990, 1(1): 29-30.

    19. [19]

      Zhang De-WuTao Xiao-YuLiu Ji-MeiChen Ri-DaoZhang MinFang Xiao-MeiYu Li-YanDai Jun-Gui . A new polyketide synthase nonribosomal peptide synthetase hybrid metabolite from plant endophytic fungus Periconia sp.. Chinese Chemical Letters, 2016, 27(5): 640-642. doi: 10.1016/j.cclet.2016.02.005

    20. [20]

      Liang LuChen YongChen Xu-ManZhang YiLiu Yu . Cyclodextrin/polyethylenimine-based supramolecular nanoparticles for loading and sustained release of ATP. Chinese Chemical Letters, 2018, 29(6): 989-991. doi: 10.1016/j.cclet.2017.12.022

Metrics
  • PDF Downloads(1)
  • Abstract views(126)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return