Citation: Yadong Feng, Zhengping Wu, Ting Chen, Qi Fu, Qihua You, Jinhai Shen, Xiuling Cui. Palladium-catalyzed oxidative homocoupling of 2-arylquinazolinones[J]. Chinese Chemical Letters, ;2020, 31(12): 3263-3266. doi: 10.1016/j.cclet.2020.03.080 shu

Palladium-catalyzed oxidative homocoupling of 2-arylquinazolinones

    * Corresponding authors at: College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China.
    E-mail addresses: fengyd@hxxy.edu.cn (Y. Feng), cuixl@hqu.edu.cn (X. Cui).
  • Received Date: 8 March 2020
    Revised Date: 20 March 2020
    Accepted Date: 31 March 2020
    Available Online: 15 April 2020

Figures(5)

  • Pd-catalyzed oxidative homocoupling of 2-arylquinazolinones was successfully developed for the direct construction of biaryls via C-H bond activation. New well-defined structure that possessed two quinazolinone units was obtained with high efficiency and atomic economy. The protocols offer an efficient approach to the synthetically useful and functionalized biaryls in good yields using quinazolinone as a directing group.
  • 加载中
    1. [1]

      (a) J. Hassan, M. Sevignon, C. Gozzi, et al., Chem. Rev. 102(2002) 1359-1470;
      (b) C.S.V. Yeung, M. Dong, Chem. Rev. 111(2011) 1215-129;
      (c) K. Hirano, M. Miura, Chem. Commun. 48(2012) 10704-10714;
      (d) S.A. Girard, T. Knauber, C.J. Li, Angew. Chem. Int. Ed. 126(2014) 76-103;
      (e) Y. Wu, J. Wang, F. Mao, et al., Chem. Asian J. 9(2014) 26-47.

    2. [2]

      (a) C.J. Li, Z. Li, Pure Appl. Chem. 78(2006) 935-945;
      (b) M. Matsushita, K. Kamata, K. Yamaguchi, et al., J. Am. Chem. Soc.127(2005) 6632-6640;
      (c) X.L. Li, J.B. Hewgley, C.A. Mulrooney, et al., J. Org. Chem. 68(2003) 5500-5511;
      (d) L. Grigorjeva, O. Daugulis, Org. Lett. 17(2015) 1204-1207;
      (e) A.J. Paterson, S.St. John-Campbell, M.F. Mahon, et al., Chem. Commun. 51(2015) 12807-12810;
      (f) K. Masui, H. Ikegami, A. Mori, J. Am. Chem. Soc. 126(2004) 5074-5075;
      (g) M. Takahashi, K. Masui, H. Sekiguchi, et al., J. Am. Chem. Soc. 128(2006) 10930-10933;
      (h) R. Li, L. Jiang, W. Lu, Organometallics 25(2006) 5973-5975;
      (i) K. Fagnou, Science 316(2007) 1172-1175;
      (j) T.A. Dwight, N.R. Rue, D. Charyk, et al., Org. Lett. 9(2007) 3137-3139;
      (k) X. Qin, D. Sun, Q. You, et al., Org. Lett. 17(2015) 1762-1765;
      (l) Y. Yang, J. Lan, J. You, Chem. Rev. 117(2017) 8787-8863;
      (m) J. Wencel-Delord, C. Nimphius, H. Wang, et al., Angew. Chem. Int. Ed. 51(2012) 13001-13005;
      (o) X. Han, P. Lin, Q. Li, Chin. Chem. Lett. 30(2019) 1495-1502;
      (p) S. Yuan, S. Wang, M. Zhao, et al., Chin. Chem. Lett. 31(2020) 349-352;
      (q) Q. Huang, L. Zhu, D. Yi, X. Zhao, W. Wei, Chin. Chem. Lett. 31(2020) 373-376;
      (r) X. Zhang, S. Dong, Q. Ding, X. Fan, G. Zhang, Chin. Chem. Lett. 30(2019) 375-378.

    3. [3]

      R. van Helden, G. Verberg, Recl. Trav. Chim. Pays-Bas 84(1965) 1263-1273.

    4. [4]

      R. Li, L. Jiang, W. Lu, Organometallics 25(2006) 5973-5975.  doi: 10.1021/om060889d

    5. [5]

      J.B. Xia, X.Q. Wang, S.L. You, J. Org. Chem. 74(2009) 456-458.  doi: 10.1021/jo802227u

    6. [6]

      Y. Liu, X. Wang, X. Cai, et al., ChemCatChem 8(2016) 448-454.  doi: 10.1002/cctc.201500951

    7. [7]

      Y. Guo, K.K. Yu, L.H. Xing, et al., Adv. Synth. Catal. 357(2017) 410-418.

    8. [8]

      (a) A.K. Nanda, S. Ganguli, R. Chakraborty, Molecules 12(2007) 2413-2426;
      (b) J.H. Chan, J.S. Hong, L.F. Kuyper, et al., J. Med. Chem. 38(1995) 3608-3616;
      (c) H.Kikuchi, K. Yamamoto, S. Horoiwa, etal., J.Med. Chem.49(2006)4698-4706;
      (d) Y. Takase, T. Saeki, N. Watanabe, et al., J. Med. Chem. 37(1994) 2106-2111;
      (e) M. Dupuy, F. Pinguet, O. Chavignon, et al., Chem. Pharm. Bull. 49(2001) 1061-1065;
      (f) P.M. Chandrika, T. Yakaiah, A.R.R. Rao, et al., Eur. J. Med. Chem. 43(2008) 846-852;
      (g) M.H. Yen, J.R. Sheu, I.H. Peng, et al., J. Pharm. Pharmacol. 48(1996) 90-95;
      (h) J. Kunes, J. Bazant, M. Pour, et al., Farmaco 55(2000) 725-729;
      (i) K. Waisser, J. Gregor, H. Dostal, et al., Farmaco 56(2001) 803-807;
      (j) A. Archana, V.K. Shrivastava, R. Chandra, et al., Indian J. Chem. 41B (2002) 2371-2375.

    9. [9]

      S.A. Shiba, A.A. El-Khamry, M.E. Shaban, et al., Pharmazie 52(1997) 189-194.

    10. [10]

      (a) Y. Feng, N. Tian, Y. Li, et al., Org. Lett. 19(2017) 1658-1661;
      (b) Y. Feng, Y. Li, Y. Yu, L. Wang, X. Cui, RSC Adv. 8(2018) 8450-8454;
      (c) Y. Feng, Z. Zhang, Q. Fu, et al., Chin. Chem. Lett. 31(2020) 58-60;
      (d) Y. Feng, Y. Liu, Q. Fu, et al., Chin. Chem. Lett. 31(2020) 733-736;
      (e) W. Fu, L. Wang, Z. Shi, et al., Chem. Commun. 56(2020) 560-563;
      (f) Y. Wu, C. Pi, X. Cui, et al., Org. Lett. 22(2020) 361-364;
      (g) J. Ren, X. Yan, X. Cui, et al., Green Chem. 22(2020) 265-269;
      (h) X. Mi, Y. Kong, J. Zhang, et al., Chin. Chem. Lett. 30(2019) 2295-2298;
      (i) Y. He, C. Pi, Y. Wu, et al., Chin. Chem. Lett. 31(2020) 396-400.

    11. [11]

      (a) Y. Li, Y. Feng, L. Xu, et al., Org. Lett. 18(2016) 4924-4927;
      (b) Y. Li, M. Gao, L. Wang, et al., Org. Biomol. Chem. 14(2016) 8428-8432;
      (c) M. Gao, Y. Li, L. Xie, et al., Chem. Commun. 52(2016) 2846-2849;
      (d) M. Wei, L. Wang, X. Cui, Chin. Chem. Lett. 26(2015) 1336-1340;
      (e) L. Wang, Z. Yang, M. Yang, et al., Org. Biomol. Chem. 15(2017) 8302-8307.

    12. [12]

      (a) K.L. Hull, E.L. Lanni, M.S. Sanford, J. Am. Chem. Soc. 128(2006) 14047-14049;
      (b) S.R. Whitfield, M.S. Sanford, J. Am. Chem. Soc. 129(2007) 15142-15143;
      (c) J.M. Racowski, A.R. Dick, M.S. Sanford, J. Am. Chem. Soc. 131(2009) 10974-10983;
      (d) H. Batchu, S. Bhattacharyya, R. Kant, et al., J. Org. Chem. 80(2015) 7360-7374;
      (e) L. Hull, S. Sanford, J. Am. Chem. Soc. 131(2009) 9651-9653.

  • 加载中
    1. [1]

      Qiuyun LiYannan ZhuYining WangGang QiWen-Juan HaoKelu YanBo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494

    2. [2]

      Tianzhu QinWeiwei Zi . Palladium-catalyzed enantioselective [2σ + 2π] cycloadditions of vinyl-carbonyl-bicyclo[1.1.0]butanes with arylidenemalononitriles. Chinese Chemical Letters, 2026, 37(1): 111072-. doi: 10.1016/j.cclet.2025.111072

    3. [3]

      Xiao TangErik V. Van der EyckenLiangliang Song . Transition metal-catalyzed C-H activation/annulation for the construction of unnatural amino acids and peptides. Chinese Chemical Letters, 2026, 37(2): 111678-. doi: 10.1016/j.cclet.2025.111678

    4. [4]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    5. [5]

      Junlong TangYuhan ZhaoYangbin JinLiren ZhangYuanfang WangWanqing WuHuanfeng Jiang . Palladium-catalyzed modular biomimetic synthesis of lignans derivatives. Chinese Chemical Letters, 2025, 36(7): 110969-. doi: 10.1016/j.cclet.2025.110969

    6. [6]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    7. [7]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    8. [8]

      Tian-Zhang WangLe-Yu TangYu-Qiu GuanLingfei HuGang LuYu-Feng Liang . Nickel-catalyzed reductive alkynylation of ketoimines via unstrained C–C bond activation. Chinese Chemical Letters, 2025, 36(11): 111050-. doi: 10.1016/j.cclet.2025.111050

    9. [9]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    10. [10]

      Wenze ShiYang DongXihong WangMin WangJian Liao . SOP-ligand enabled palladium-catalyzed enantioselective anti-Markovnikov hydrothioesterification of α-substituted styrenes. Chinese Chemical Letters, 2025, 36(11): 111023-. doi: 10.1016/j.cclet.2025.111023

    11. [11]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    12. [12]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    13. [13]

      Yongli ZhaoDingsheng CaoJie-Ping WanYunyun Liu . Synthesis of 3-phosphinyl chromones via in situ iodination mediated C-H phosphination and the tunable synthesis of 2-phosphoryl chromanones. Chinese Chemical Letters, 2026, 37(1): 111740-. doi: 10.1016/j.cclet.2025.111740

    14. [14]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    15. [15]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    16. [16]

      Qiao SongXue PengZhouyu WangLeyong Wang . Iron-catalyzed C–H activation: A sustainable approach to efficient organic synthesis. Chinese Chemical Letters, 2025, 36(5): 110869-. doi: 10.1016/j.cclet.2025.110869

    17. [17]

      Yang LiYanan DongZhihong WeiChangzeng YanZhen LiLin HeYuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206

    18. [18]

      Weimei ZengYouai Qiu . Electrochemical C-H carboxylation of benzylamines. Chinese Chemical Letters, 2026, 37(1): 111679-. doi: 10.1016/j.cclet.2025.111679

    19. [19]

      Xinghao CaiChen MaYing KangYuqiang RenXue MengWei LuShiming FanShouxin Liu . Nickel-catalyzed C(sp2)–H alkynylation of free α-substituted benzylamines using a transient directing group. Chinese Chemical Letters, 2025, 36(10): 110901-. doi: 10.1016/j.cclet.2025.110901

    20. [20]

      Cong-Bin JiDing-Xiong XieMei ChenYe-Ying LanBao-Hua ZhangJi-Ying YangZheng-Hui KangShu-Jie ChenYu-Wei ZhangYun-Lin Liu . Green synthesis of 2-trifluoromethylquinoline skeletons via organocatalytic N-[(α-trifluoromethyl)vinyl]isatins CN bond activation. Chinese Chemical Letters, 2025, 36(7): 110598-. doi: 10.1016/j.cclet.2024.110598

Metrics
  • PDF Downloads(6)
  • Abstract views(1887)
  • HTML views(273)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return