A review of linear carbon chains
-
* Corresponding author.
E-mail address: shilei26@mail.sysu.edu.cn (L. Shi).
1 These authors contributed equally to this work.
Citation:
Zhang Kan, Zhang Yifan, Shi Lei. A review of linear carbon chains[J]. Chinese Chemical Letters,
;2020, 31(7): 1746-1756.
doi:
10.1016/j.cclet.2020.03.019
H. Kroto, J. Heath, S. O'Brien, R. Curl, R. Smalley, Nature 318 (1985) 162-163.
doi: 10.1038/318162a0
S. Iijima, Nature 354 (1991) 56-58.
doi: 10.1038/354056a0
A.K. Geim, K.S. Novoselov, Nat. Mater. 6 (2007) 183-191.
doi: 10.1038/nmat1849
A. Karpfen, J. Phys, C:Solid State Phys. 12 (1979) 3227-3237.
doi: 10.1088/0022-3719/12/16/011
R.E. Peierls, Quantum Theory of Solids, Clarendon Press, London, 1996.
R. Hoffmann, Angew. Chem. Int. Ed. 26 (1987) 846-878.
doi: 10.1002/anie.198708461
A. Milani, M. Tommasini, D. Fazzi, et al., J. Raman Spectrosc. 39 (2008) 164-168.
doi: 10.1002/jrs.1850
W.A. Chalifoux, R. McDonald, M.J. Ferguson, R.R. Tykwinski, Angew. Chem. Int. Ed. 48 (2009) 7915-7919.
doi: 10.1002/anie.200902760
J.A. Januszewski, R.R. Tykwinski, Chem. Soc. Rev. 43 (2014) 3184-3203.
doi: 10.1039/C4CS00022F
A.L.K. Shi Shun, R.R. Tykwinski, Angew. Chem. Int. Ed. 45 (2006) 1034-1057.
doi: 10.1002/anie.200502071
C.S. Casari, M. Tommasini, R.R. Tykwinski, A. Milani, Nanoscale 8 (2016) 4414-4435.
doi: 10.1039/C5NR06175J
A. Sladkov, Sov. Sci. Rev. B 3 (1981) 75-110.
V.V. Korshak, V.I. Kasatochkin, A.M. Sladkov, Y.P. Kudryavtsev, K. Usenbaev, Dokl. Akad. Nauk SSSR 136 (1961) 1342-1344.
R. Eastmond, T.R. Johnson, D.R.M. Walton, Tetrahedron 28 (1972) 4601-4616.
doi: 10.1016/0040-4020(72)80041-3
A.G. Whittaker, Nature 276 (1978) 695-696.
doi: 10.1038/276695a0
E. Kloster-Jensen, Angew. Chem. Int. Ed. 11 (1972) 438-439.
doi: 10.1002/anie.197204381
W.A. Chalifoux, R.R. Tykwinski, Nat. Chem. 2 (2010) 967-971.
doi: 10.1038/nchem.828
X. Zhao, Y. Ando, Y. Liu, M. Jinno, T. Suzuki, Phys. Rev. Lett. 90 (2003) 187401.
L. Shi, P. Rohringer, K. Suenaga, et al., Nat. Mater. 15 (2016) 634-639.
doi: 10.1038/nmat4617
S. Toma, K. Asaka, M. Irita, Y. Saito, Surf. Interface Anal. 51 (2019) 131-135.
doi: 10.1002/sia.6590
L. Shi, K. Yanagi, K. Cao, et al., ACS Nano 12 (2018) 8477-8484.
doi: 10.1021/acsnano.8b04006
C. Jin, H. Lan, L. Peng, K. Suenaga, S. Iijima, Phys. Rev. Lett. 102 (2009) 205501.
doi: 10.1103/PhysRevLett.102.205501
B. Pan, J. Xiao, J. Li, et al., Sci. Adv. 1 (2015) e1500857.
doi: 10.1126/sciadv.1500857
L. Shi, P. Rohringer, M. Wanko, et al., Phys. Rev. Mater. 1 (2017) 075601.
doi: 10.1103/PhysRevMaterials.1.075601
M. Wanko, S. Cahangirov, L. Shi, et al., Phys. Rev. B 94 (2016) 195422.
doi: 10.1103/PhysRevB.94.195422
R.B. Heimann, S.E. Evsyukov, L. Kavan, Carbyne and Carbynoid Structures, Springer Science & Business Media, Dordrecht, 1999.
A. Lucotti, M. Tommasini, D. Fazzi, et al., J. Raman Spectrosc. 43 (2012) 1293-1298.
doi: 10.1002/jrs.3166
S. Yang, M. Kertesz, J. Phys. Chem. A 110 (2006) 9771-9774.
doi: 10.1021/jp062701+
S. Eisler, A.D. Slepkov, E. Elliott, et al., J. Am. Chem. Soc.127 (2005) 2666-2676.
doi: 10.1021/ja044526l
Q. Zheng, J.C. Bohling, T.B. Peters, et al., Chem. -Eur. J. 12 (2006) 6486-6505.
doi: 10.1002/chem.200600615
F. Bohlmann, Chem. Ber. 86 (1953) 657-667.
doi: 10.1002/cber.19530860519
E. Jones, H. Lee, M. Whiting, J. Chem. Soc. (1960) 3483-3489.
T.R. Johnson, D.R.M. Walton, Tetrahedron 28 (1972) 5221-5236.
doi: 10.1016/S0040-4020(01)88941-9
N.R. Agarwal, A. Lucotti, D. Fazzi, et al., J. Raman Spectrosc. 44 (2013) 1398-1410.
doi: 10.1002/jrs.4300
T. Peacock, R. McWeeny, Proc. Phys. Soc. 74 (1959) 385-394.
doi: 10.1088/0370-1328/74/4/301
G. Del Re, J. Ladik, G. Biczo, Phys. Rev. 155 (1967) 997-1003.
doi: 10.1103/PhysRev.155.997
J.M. André, L. Gouverneur, E.G. Leroy, Int. J. Quantum Chem.1 (1967) 451-461.
doi: 10.1002/qua.560010416
J.M. André, G. Leroy, Chem. Phys. Lett. 5 (1970) 71-74.
doi: 10.1016/0009-2614(70)80004-5
M. Kertész, J. Koller, A. Ažman, S. Suhai, Phys. Lett. A 55 (1975) 107-108.
C. Merkel, J. Ladik, Phys. Lett. A 56 (1976) 395-396.
doi: 10.1016/0375-9601(76)90385-6
M. Kertész, J. Koller, A. Azman, J. Chem. Phys. 67 (1977) 1180-1186.
doi: 10.1063/1.434972
S. Suhai, J. Ladik, Solid State Commun. 22 (1977) 227-229.
doi: 10.1016/0038-1098(77)90399-4
H. Longuet-Higgins, F. Burkitt, Trans. Faraday Soc. 48 (1952) 1077-1084.
doi: 10.1039/tf9524801077
R. Hoffmann, Tetrahedron 22 (1966) 521-538.
doi: 10.1016/0040-4020(66)80020-0
I. Stankevich, O. Tomilin, Electronic-Structure of Kabbin Molecules, Mezhdunarodnaya Kniga, Moscow, 1973.
M.J. Rice, A.R. Bishop, D.K. Campbell, Phys. Rev. Lett. 51 (1983) 2136-2139.
doi: 10.1103/PhysRevLett.51.2136
Z. Wang, X. Ke, Z. Zhu, et al., Phys. Rev. B 61 (2000) R2472-R2474.
doi: 10.1103/PhysRevB.61.R2472
M. Jinno, Y. Ando, S. Bandow, et al., Chem. Phys. Lett. 418 (2006) 109-114.
doi: 10.1016/j.cplett.2005.10.089
M. Kertesz, J. Koller, A. Azman, J. Chem. Phys. 68 (1978) 2779-2782.
doi: 10.1063/1.436070
S. Phillpot, M. Rice, A. Bishop, D. Campbell, Phys. Rev. B 36 (1987) 1735-1744.
doi: 10.1103/PhysRevB.36.1735
M. Springborg, S.L. Drechsler, J. Málek, Phys. Rev. B 41 (1990) 11954-11966.
doi: 10.1103/PhysRevB.41.11954
E.J. Bylaska, J.H. Weare, R. Kawai, Phys. Rev. B 58 (1998) R7488-R7491.
doi: 10.1103/PhysRevB.58.R7488
L.U. Horný, N.D.K. Petraco, C. Pak, H.F. Schaefer, J. Am. Chem. Soc. 124 (2002) 5861-5864.
doi: 10.1021/ja012014q
A. Scemama, P. Chaquin, M.C. Gazeau, Y. Bénilan, J. Phys. Chem. A 106 (2002) 3828-3837.
doi: 10.1021/jp013043q
A. Abdurahman, A. Shukla, M. Dolg, Phys. Rev. B 65 (2002) 115106.
doi: 10.1103/PhysRevB.65.115106
C. Zhang, Z. Cao, H. Wu, Q. Zhang, Int. J. Quantum Chem. 98 (2004) 299-308.
doi: 10.1002/qua.20023
M. Weimer, W. Hieringer, F.D. Sala, A. Görling, Chem. Phys. 309 (2005) 77-87.
doi: 10.1016/j.chemphys.2004.05.026
D. Jacquemin, B. Champagne, Int. J. Quantum Chem. 80 (2000) 863-870.
doi: 10.1002/1097-461X(2000)80:4/5<863::AID-QUA36>3.0.CO;2-6
M.J.G. Peach, E.I. Tellgren, P. Sałek, T. Helgaker, D.J. Tozer, J. Phys. Chem. A 111 (2007) 11930-11935.
doi: 10.1021/jp0754839
T. Yanai, D.P. Tew, N.C. Handy, Chem. Phys. Lett. 393 (2004) 51-57.
doi: 10.1016/j.cplett.2004.06.011
Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai, K. Hirao, J. Chem. Phys. 120 (2004) 8425-8433.
doi: 10.1063/1.1688752
A.D. Becke, J. Chem. Phys. 98 (1993) 5648-5652.
doi: 10.1063/1.464913
C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785-789.
doi: 10.1103/PhysRevB.37.785
E. Mostaani, B. Monserrat, N.D. Drummond, C.J. Lambert, Phys. Chem. Chem. Phys. 18 (2016) 14810-14821.
doi: 10.1039/C5CP07891A
T.D. Poulsen, K.V. Mikkelsen, J.G. Fripiat, D. Jacquemin, B. Champagne, J. Chem. Phys. 114 (2001) 5917-5922.
doi: 10.1063/1.1353550
C.D. Zeinalipour-Yazdi, D.P. Pullman, J. Phys. Chem. B 112 (2008) 7377-7386.
doi: 10.1021/jp800302s
V. TURBOMOLE, A Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH since 2007, 2010.
J.P. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys. 105 (1996) 9982-9985.
doi: 10.1063/1.472933
T. Körzdörfer, R.M. Parrish, J.S. Sears, C.D. Sherrill, J.L. Brédas, J. Chem. Phys. 137 (2012) 124305.
D. Jacquemin, C. Adamo, J. Chem. Theory Comput. 7 (2011) 369-376.
doi: 10.1021/ct1006532
M. Wykes, N.Q. Su, X. Xu, C. Adamo, J.C. Sancho-García, J. Chem. Theory Comput. 11 (2015) 832-838.
doi: 10.1021/ct500986b
W. Luo, W. Windl, Carbon 47 (2009) 367-383.
doi: 10.1016/j.carbon.2008.10.017
Y.H. Hu, Phys. Lett. A 373 (2009) 3554-3557.
doi: 10.1016/j.physleta.2009.07.067
S. Cahangirov, M. Topsakal, S. Ciraci, Phys. Rev. B 82 (2010) 195444.
doi: 10.1103/PhysRevB.82.195444
Z. Lin, X. Ning, Europhys. Lett. 95 (2011) 47012.
doi: 10.1209/0295-5075/95/47012
Y.H. Hu, J. Phys. Chem. C 115 (2011) 1843-1850.
doi: 10.1021/jp111851u
M. Liu, V.I. Artyukhov, H. Lee, F. Xu, B.I. Yakobson, ACS Nano 7 (2013) 10075-10082.
doi: 10.1021/nn404177r
Q. Yuan, F. Ding, Nanoscale 6 (2014) 12727-12731.
doi: 10.1039/C4NR03757J
A. Timoshevskii, S. Kotrechko, Y. Matviychuk, Phys. Rev. B 91 (2015) 245434.
doi: 10.1103/PhysRevB.91.245434
C.B. Cannella, N. Goldman, J. Phys. Chem. C 119 (2015) 21605-21611.
doi: 10.1021/acs.jpcc.5b03781
S. Yang, M. Kertesz, J. Phys. Chem. A 112 (2008) 146-151.
doi: 10.1021/jp076805b
M. Kertesz, C.H. Choi, S. Yang, Chem. Rev. 105 (2005) 3448-3481.
doi: 10.1021/cr990357p
A. Milani, M. Tommasini, G. Zerbi, J. Raman Spectrosc. 40 (2009) 1931-1934.
doi: 10.1002/jrs.2342
T. Gibtner, F. Hampel, J.P. Gisselbrecht, A. Hirsch, Chem.-Eur. J. 8 (2002) 408-432.
doi: 10.1002/1521-3765(20020118)8:2<408::AID-CHEM408>3.0.CO;2-L
R. Zbinden, Infrared Spectroscopy of High Polymers, Academic Press, New York, 1964.
M. Tommasini, D. Fazzi, A. Milani, et al., J. Phys. Chem. A 111 (2007) 11645-11651.
doi: 10.1021/jp0757006
E. Gross, J. Dobson, M. Petersilka, Density functional theory, in: R.F. Nalewajski (Ed.), Topics in Current Chemistry, Springer, Berlin, 1996, pp. 81-172.
D.P. Cong, Recent Advances in Density Functional Methods, World Scientific, Singapore, 1995.
R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 256 (1996) 454-464.
doi: 10.1016/0009-2614(96)00440-X
S. Heeg, L. Shi, L.V. Poulikakos, T. Pichler, L. Novotny, Nano Lett. 18 (2018) 5426-5431.
doi: 10.1021/acs.nanolett.8b01681
M. Tsuji, T. Tsuji, S. Kuboyama, et al., Chem. Phys. Lett. 355 (2002) 101-108.
doi: 10.1016/S0009-2614(02)00192-6
F. Cataldo, Tetrahedron Lett. 45 (2004) 141-144.
doi: 10.1016/j.tetlet.2003.10.100
C. Cook, E. Jones, M. Whiting, J. Chem. Soc. (1952) 2883-2891.
A. Lucotti, M. Tommasini, D. Fazzi, et al., J. Am. Chem. Soc. 131 (2009) 4239-4244.
doi: 10.1021/ja078198b
A. Lucotti, M. Tommasini, W.A. Chalifoux, et al., J. Raman Spectrosc. 43 (2012) 95-101.
doi: 10.1002/jrs.2992
F. Cataldo, L. Ravagnan, E. Cinquanta, et al., J. Phys. Chem. B 114 (2010) 14834-14841.
doi: 10.1021/jp104863v
E. Cinquanta, L. Ravagnan, I.E. Castelli, et al., J. Chem. Phys.135 (2011) 194501.
doi: 10.1063/1.3660211
S. Ballmann, W. Hieringer, D. Secker, et al., ChemPhysChem 11 (2010) 2256-2260.
doi: 10.1002/cphc.200900974
L. Ravagnan, N. Manini, E. Cinquanta, et al., Phys. Rev. Lett.102 (2009) 245502.
doi: 10.1103/PhysRevLett.102.245502
G. Onida, N. Manini, L. Ravagnan, et al., Phys. Status Solidi B 247 (2010) 2017-2021.
doi: 10.1002/pssb.200983946
K.H. Xue, S.P. Chen, L.X. Wang, et al., Chem. Phys. Lett. 469 (2009) 284-288.
doi: 10.1016/j.cplett.2008.12.075
A. Lucotti, M. Tommasini, M.D. Zoppo, et al., Chem. Phys. Lett. 417 (2006) 78-82.
doi: 10.1016/j.cplett.2005.10.016
A. Lucotti, C.S. Casari, M. Tommasini, et al., Chem. Phys. Lett. 478 (2009) 45-50.
doi: 10.1016/j.cplett.2009.06.030
A. Milani, A. Lucotti, V. Russo, et al., J. Phys. Chem. C 115 (2011) 12836-12843.
doi: 10.1021/jp203682c
P. Tarakeshwar, P.R. Buseck, H.W. Kroto, J. Phys. Chem. Lett. 7 (2016) 1675-1681.
doi: 10.1021/acs.jpclett.6b00671
A. Milani, V. Barbieri, A. Facibeni, et al., Sci. Rep. 9 (2019) 1648.
doi: 10.1038/s41598-018-38367-9
X. Fan, L. Liu, J. Lin, Z. Shen, J.L. Kuo, ACS Nano 3 (2009) 3788-3794.
doi: 10.1021/nn901090e
A. Cupolillo, M. Castriota, E. Cazzanelli, et al., J. Raman Spectrosc. 39 (2008) 147-152.
doi: 10.1002/jrs.1871
S. Szafert, J. Gladysz, Chem. Rev. 106 (2006) PR1-PR33.
doi: 10.1021/cr040095d
W.F. Maier, G.C. Lau, A.B. McEwen, J. Am. Chem. Soc. 107 (1985) 4724-4731.
doi: 10.1021/ja00302a021
C. Santiago, K. Houk, G.J. DeCicco, L.T. Scott, J. Am. Chem. Soc.100 (1978) 692-696.
doi: 10.1021/ja00471a005
E.A. Buntov, A.F. Zatsepin, M.B. Guseva, Y.S. Ponosov, Carbon 117 (2017) 271-278.
doi: 10.1016/j.carbon.2017.03.010
V. Babaev, M. Guseva, Ion-assisted condensation of carbon, in: R.B. Heimann, S.E. Evsyukov, L. Kavan (Eds.), Eds.), Carbyne and Carbynoid Structures, Springer, Dordrecht, 1999, pp. 159-171.
R. Heimann, J. Kleiman, N. Salansky, Nature 306 (1983) 164-167.
doi: 10.1038/306164a0
V. Babaev, M. Guseva, V. Khvostov, N. Novikov, P. Flood, Carbon material with a highly ordered linear-chain structure, in: F. Cataldo (Ed.), Polyynes: Synthesis, Properties, and Applications, CRC Press, Boca Raton, 2005, pp. 219-252.
A. La Torre, A. Botello-Mendez, W. Baaziz, J.C. Charlier, F. Banhart, Nat. Commun. 6 (2015) 6636.
V.I. Artyukhov, M. Liu, B.I. Yakobson, Nano Lett. 14 (2014) 4224-4229.
doi: 10.1021/nl5017317
C. Wong, E. Buntov, V. Rychkov, M. Guseva, A. Zatsepin, Carbon 114 (2017) 106-110.
doi: 10.1016/j.carbon.2016.12.009
J. Kastner, H. Kuzmany, L. Kavan, F. Dousek, J. Kürti, Macromolecules 28 (1995) 344-353.
doi: 10.1021/ma00105a048
R.J. Lagow, J.J. Kampa, H.C. Wei, et al., Science 267 (1995) 362-367.
doi: 10.1126/science.267.5196.362
T. Pino, H. Ding, F. Güthe, J.P. Maier, J. Chem. Phys. 114 (2001) 2208-2212.
doi: 10.1063/1.1338530
M.C. McCarthy, P. Thaddeus, Chem. Soc. Rev. 30 (2001) 177-185.
doi: 10.1039/b006648f
W. Krätschmer, N. Sorg, D.R. Huffman, Surf. Sci. 156 (1985) 814-821.
doi: 10.1016/0039-6028(85)90253-5
A.K. Ott, G.A. Rechtsteiner, C. Felix, et al., J. Chem. Phys. 109 (1998) 9652-9655.
doi: 10.1063/1.477632
J. Szczepanski, J. Fuller, S. Ekern, M. Vala, Spectrochim. Acta, Part A 57 (2001) 775-786.
doi: 10.1016/S1386-1425(00)00443-1
L. Kavan, Chem. Rev. 97 (1997) 3061-3082.
doi: 10.1021/cr960003n
A. Baeyer, Ber. Dtsch. Chem. Ges. 18 (1885) 2269-2281.
doi: 10.1002/cber.18850180296
M. Tsuji, S. Kuboyama, T. Matsuzaki, T. Tsuji, Carbon 41 (2003) 2141-2148.
doi: 10.1016/S0008-6223(03)00241-0
M. Nakagawa, S. Akiyama, K. Nakasuji, K. Nishimoto, Tetrahedron 27 (1971) 5401-5418.
doi: 10.1016/S0040-4020(01)91706-5
U.H. Bunz, Angew. Chem. Int. Ed. 35 (1996) 969-971.
doi: 10.1002/anie.199609691
M.I. Bruce, P.J. Low, Adv. Organomet. Chem. 50 (2004) 180-444.
M.I. Bruce, Coord. Chem. Rev. 166 (1997) 91-119.
doi: 10.1016/S0010-8545(97)00004-0
N.J. Long, C.K. Williams, Angew. Chem. Int. Ed. 42 (2003) 2586-2617.
doi: 10.1002/anie.200200537
A.B. Antonova, M.I. Bruce, B.G. Ellis, et al., Chem. Commun. 8 (2004) 960-961.
doi: 10.1039/b315854n
V.W.W. Yam, K.M.C. Wong, N. Zhu, Angew. Chem. Int. Ed. 42 (2003) 1400-1403.
doi: 10.1002/anie.200390360
G.L. Xu, G. Zou, Y.H. Ni, et al., J. Am. Chem. Soc. 125 (2003) 10057-10065.
doi: 10.1021/ja035434j
W. Lu, H.F. Xiang, N. Zhu, C.M. Che, Organometallics 21 (2002) 2343-2346.
doi: 10.1021/om011087f
A. Sakurai, M. Akita, Y. Moro-oka, Organometallics 18 (1999) 3241-3244.
doi: 10.1021/om990266i
M. Akita, M.C. Chung, A. Sakurai, et al., Organometallics 16 (1997) 4882-4888.
doi: 10.1021/om970538m
R. Dembinski, T. Bartik, B. Bartik, M. Jaeger, J. Gladysz, J. Am. Chem. Soc. 122 (2000) 810-822.
doi: 10.1021/ja992747z
R.B. Heimann, Diamond Relat. Mater. 3 (1994) 1151-1157.
doi: 10.1016/0925-9635(94)90161-9
L. Kavan, J. Kastner, Carbon 32 (1994) 1533-1536.
doi: 10.1016/0008-6223(94)90149-X
T. Wakabayashi, M. Saikawa, Y. Wada, T. Minematsu, Carbon 50 (2012) 47-56.
doi: 10.1016/j.carbon.2011.07.053
G. Compagnini, V. Mita, R.S. Cataliotti, L. D'Urso, O. Puglisi, Carbon 12 (2007) 2456-2458.
doi: 10.1016/j.carbon.2007.07.002
Y. Taguchi, H. Endo, Y. Abe, et al., Carbon 94 (2015) 124-128.
doi: 10.1016/j.carbon.2015.06.058
A. Ramadhan, M. Wesolowski, T. Wakabayashi, et al., Carbon 118 (2017) 680-685.
doi: 10.1016/j.carbon.2017.03.096
A. Hu, M. Rybachuk, Q.B. Lu, W. Duley, Appl. Phys. Lett. 91 (2007) 131906.
doi: 10.1063/1.2793628
A. Hu, Q.B. Lu, W.W. Duley, M. Rybachuk, J. Chem. Phys. 126 (2007) 154705.
doi: 10.1063/1.2727450
A. Hu, J. Sanderson, A. Zaidi, et al., Carbon 46 (2008) 1823-1825.
doi: 10.1016/j.carbon.2008.07.036
K.H. Xue, F.F. Tao, W. Shen, et al., Chem. Phys. Lett. 385 (2004) 477-480.
doi: 10.1016/j.cplett.2004.01.007
V. Derycke, P. Soukiassian, A. Mayne, G. Dujardin, J. Gautier, Phys. Rev. Lett. 81 (1998) 5868-5871.
doi: 10.1103/PhysRevLett.81.5868
V. Vil'yams, V. Smimov, V. Gol'mov, Obsch. Khim 5 (1935) 1195-1204.
J.D. Bu'Lock, Q. Rev, Chem. Soc. 10 (1956) 371-394.
G. Nakaminami, J. Synth, Org. Chem Jpn. 21 (1963) 751-765.
doi: 10.5059/yukigoseikyokaishi.21.751
E. Kano, M. Takeguchi, J.I. Fujita, A. Hashimoto, Carbon 80 (2014) 382-386.
doi: 10.1016/j.carbon.2014.08.077
Y.P. Kudryavtsev, Oxidative dehydropolycondensation-a new method to synthesize polymers with triple bonds, in: V.V. Korshak (Ed.), Progress in Polymer Chemistry, Nauka, Moscow, 1969, pp. 87-112.
C.S. Casari, A.L. Bassi, L. Ravagnan, et al., Phys. Rev. B 69 (2004) 075422.
doi: 10.1103/PhysRevB.69.075422
D. Nishide, T. Wakabayashi, T. Sugai, et al., J. Phys. Chem. C 111 (2007) 5178-5183.
doi: 10.1021/jp0686442
N. Andrade, T. Vasconcelos, C. Gouvea, et al., Carbon 90 (2015) 172-180.
doi: 10.1016/j.carbon.2015.04.001
E. Cazzanelli, M. Castriota, L. Caputi, et al., Phys. Rev. B 75 (2007)121405.
doi: 10.1103/PhysRevB.75.121405
Y.A. Kim, H. Muramatsu, T. Hayashi, M. Endo, Carbon 50 (2012) 4588-4595.
doi: 10.1016/j.carbon.2012.05.044
V. Scuderi, S. Scalese, S. Bagiante, et al., Carbon 47 (2009) 2134-2137.
doi: 10.1016/j.carbon.2009.04.010
M. Jinno, S. Bandow, Y. Ando, Chem. Phys. Lett. 398 (2004) 256-259.
doi: 10.1016/j.cplett.2004.09.064
C.S. Kang, K. Fujisawa, Y.I. Ko, et al., Carbon 107 (2016) 217-224.
doi: 10.1016/j.carbon.2016.05.069
Y. Zhang, J. Zhao, Y. Fang, Y. Liu, X. Zhao, Nanoscale 10 (2018) 17824-17833.
doi: 10.1039/C8NR05465G
M. Endo, Y.A. Kim, T. Hayashi, et al., Small 2 (2006) 1031-1036.
doi: 10.1002/smll.200600087
L. Shi, P. Rohringer, P. Ayala, T. Saito, T. Pichler, Phys. Status Solidi B 250 (2013) 2611-2615.
doi: 10.1002/pssb.201300148
L. Shi, L. Sheng, L. Yu, et al., Nano Res. 4 (2011) 759-766.
doi: 10.1007/s12274-011-0132-y
L. Sheng, A. Jin, L. Yu, et al., Mater. Lett. 81 (2012) 222-224.
doi: 10.1016/j.matlet.2012.04.140
J. Ha, H.Y. Jung, J. Hao, et al., Nanoscale 9 (2017) 16627-16631.
doi: 10.1039/C7NR05883G
L. Shi, J. Wei, K. Yanagi, et al., Nanoscale 10 (2018) 21254-21261.
doi: 10.1039/C8NR06925E
Y. Liu, R. Jones, X. Zhao, Y. Ando, Phys. Rev. B 68 (2003) 125413.
doi: 10.1103/PhysRevB.68.125413
P.M. Ajayan, Nature 361 (1993) 333-334.
doi: 10.1038/361333a0
A.N. Khlobystov, D.A. Britz, A. Ardavan, G.A.D. Briggs, Phys. Rev. Lett. 92 (2004) 245507.
doi: 10.1103/PhysRevLett.92.245507
H. Kuzmany, L. Shi, J. Kürti, et al., Phys. Status Solidi RRL 11 (2017) 1700158.
doi: 10.1002/pssr.201700158
T. Fujimori, A. Morelos-Gómez, Z. Zhu, et al., Nat. Commun. 4 (2013) 2162.
doi: 10.1038/ncomms3162
S. Cambré, J. Campo, C. Beirnaert, et al., Nat. Nanotechnol.10 (2015) 248-252.
doi: 10.1038/nnano.2015.1
C. Zhao, R. Kitaura, H. Hara, S. Irle, H. Shinohara, J. Phys, Chem. C 115 (2011) 13166-13170.
J. Zhang, Y. Feng, H. Ishiwata, et al., ACS Nano 6 (2012) 8674-8683.
doi: 10.1021/nn303461q
J. Chimborazo, T. Saito, T. Pichler, L. Shi, P. Ayala, Appl. Phys. Lett. 115 (2019) 103102.
doi: 10.1063/1.5095679
G. Casillas, A. Mayoral, M. Liu, et al., Carbon 66 (2014) 436-441.
doi: 10.1016/j.carbon.2013.09.019
A. Chuvilin, J.C. Meyer, G. Algara-Siller, U. Kaiser, New J. Phys. 11 (2009) 083019.
doi: 10.1088/1367-2630/11/8/083019
F. Diederich, Y. Rubin, C.B. Knobler, et al., Science 245 (1989) 1088-1090.
doi: 10.1126/science.245.4922.1088
D.A. Plattner, K. Houk, J. Am. Chem. Soc. 117 (1995) 4405-4406.
doi: 10.1021/ja00120a026
K. Kaiser, L.M. Scriven, F. Schulz, et al., Science 365 (2019) 1299-1301.
doi: 10.1126/science.aay1914
L.D. Movsisyan, D.V. Kondratuk, M. Franz, et al., Org. Lett. 14 (2012) 3424-3426.
doi: 10.1021/ol301392t
N. Weisbach, Z. Baranová, S. Gauthier, J.H. Reibenspies, J.A. Gladysz, Chem. Commun. 48 (2012) 7562-7564.
doi: 10.1039/c2cc33321j
Y. Tobe, T. Wakabayashi, Acetylene-based carbon allotropes, in: F. Diederich, P.J. Stang, R.R. Tykwinski (Eds.), Eds.), Acetylene Chemistry: Chemistry, Biology, and Material Science, John Wiley & Sons, Weinheim, 2004, pp. 387-426.
A.D. Slepkov, F.A. Hegmann, S. Eisler, E. Elliott, R.R. Tykwinski, J. Chem. Phys. 120 (2004) 6807-6810.
doi: 10.1063/1.1707011
S. Shiraishi, T. Kobayashi, A. Oya, Chem. Lett. 34 (2005) 1678-1679.
doi: 10.1246/cl.2005.1678
K.H. Khoo, J. Neaton, Y.W. Son, M.L. Cohen, S.G. Louie, Nano Lett. 8 (2008) 2900-2905.
doi: 10.1021/nl8017143
Z. Zanolli, G. Onida, J.C. Charlier, ACS Nano 4 (2010) 5174-5180.
doi: 10.1021/nn100712q
M. Zeng, L. Shen, Y. Cai, Z. Sha, Y. Feng, Appl. Phys. Lett. 96 (2010) 042104.
doi: 10.1063/1.3299264
B. Akdim, R. Pachter, ACS Nano 5 (2011) 1769-1774.
doi: 10.1021/nn102403j
P.B. Sorokin, H. Lee, L.Y. Antipina, A.K. Singh, B.I. Yakobson, Nano Lett. 11 (2011) 2660-2665.
doi: 10.1021/nl200721v
K.H. Xue, F.F. Tao, W. Xu, S.Y. Yin, J.M. Liu, J. Electroanal. Chem. 578 (2005) 323-329.
doi: 10.1016/j.jelechem.2005.01.027
Y.E. Prazdnikov, J. Mod. Phys. 2 (2011) 845-848.
doi: 10.4236/jmp.2011.28100
C. Ma, J. Xiao, G. Yang, J. Mater. Chem. C 4 (2016) 4692-4698.
doi: 10.1039/C6TC00648E
J. Xiao, J. Li, G. Yang, Small 13 (2017) 1603495.
doi: 10.1002/smll.201603495
B. Xu, J. Lin, Y. Feng, Appl. Phys. Lett. 96 (2010) 163105.
doi: 10.1063/1.3397995
K. Krishnamoorthy, V.K. Mariappan, P. Pazhamalai, S. Sahoo, S.J. Kim, Nano Energy 59 (2019) 453-463.
doi: 10.1016/j.nanoen.2019.02.041
J. Liu, T. He, Q. Wang, et al., J. Mater. Chem. A 7 (2019) 12451-12456.
doi: 10.1039/C9TA02264C
H. Shi, W. Lv, C. Zhang, et al., Adv. Funct. Mater. 28 (2018) 1800508.
doi: 10.1002/adfm.201800508
J. Han, D. Kong, W. Lv, et al., Nat. Commun. 9 (2018) 1-9.
doi: 10.1038/s41467-017-02088-w
Y. Lei, Y. Wang, Y. Liu, et al., Angew. Chem. Int. Ed. (2020), doi: http://dx.doi.org/10.1002/ange.201914647.
Q. Wang, Y. Lei, D. Wang, Y. Li, Energ. Environ. Sci. 12 (2019) 1730-1750.
doi: 10.1039/C8EE03781G
L. Liu, Z.Q. Niu, J. Chen, Chin. Chem. Lett. 29 (2018) 571-581.
doi: 10.1016/j.cclet.2018.01.013
L. Chen, X. Xu, W. Yang, J. Jia, Chin. Chem. Lett. 31 (2020) 626-634.
doi: 10.1016/j.cclet.2019.08.008
Huiju Cao , Lei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
Hao Cai , Xiaoyan Wu , Lei Jiang , Feng Yu , Yuxiang Yang , Yan Li , Xian Zhang , Jian Liu , Zijian Li , Hong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946
Daheng Wen , Weiwei Fang , Yongmei Liu , Tao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394
Heng Yang , Zhijie Zhou , Conghui Tang , Feng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257
Kang Wei , Jiayu Li , Wen Zhang , Bing Yuan , Ming-De Li , Pingwu Du . A strained π-extended [10]cycloparaphenylene carbon nanoring. Chinese Chemical Letters, 2024, 35(5): 109055-. doi: 10.1016/j.cclet.2023.109055
Wenda WANG , Jinku MA , Yuzhu WEI , Shuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
Yue WANG , Zhizhi GU , Jingyi DONG , Jie ZHU , Cunguang LIU , Guohan LI , Meichen LU , Jian HAN , Shengnan CAO , Wei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472
Pei Cao , Yilan Wang , Lejian Yu , Miao Wang , Liming Zhao , Xu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421
Qiang Fu , Shouhong Sun , Kangzhi Lu , Ning Li , Zhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
Zixuan Guo , Xiaoshuai Han , Chunmei Zhang , Shuijian He , Kunming Liu , Jiapeng Hu , Weisen Yang , Shaoju Jian , Shaohua Jiang , Gaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007
Gongcheng Ma , Qihang Ding , Yuding Zhang , Yue Wang , Jingjing Xiang , Mingle Li , Qi Zhao , Saipeng Huang , Ping Gong , Jong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293
Junchuan Sun , Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330
Hang Meng , Bicheng Zhu , Ruolun Sun , Zixuan Liu , Shaowen Cao , Kan Zhang , Jiaguo Yu , Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410
Chenghao Liu , Xiaofeng Lin , Jing Liao , Min Yang , Min Jiang , Yue Huang , Zhizhi Du , Lina Chen , Sanjun Fan , Qitong Huang . Carbon dots-based dopamine sensors: Recent advances and challenges. Chinese Chemical Letters, 2024, 35(12): 109598-. doi: 10.1016/j.cclet.2024.109598
Yue Pan , Wenping Si , Yahao Li , Haotian Tan , Ji Liang , Feng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877
Yu Yao , Jinqiang Zhang , Yantao Wang , Kunsheng Hu , Yangyang Yang , Zhongshuai Zhu , Shuang Zhong , Huayang Zhang , Shaobin Wang , Xiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633