Citation: Guang-Hui Li, Qing-Qing Han, Yuan-Yuan Sun, De-Mao Chen, Zu-Li Wang, Xin-Ming Xu, Xian-Yong Yu. Visible-light induced cascade radical cyclization of sulfinic acids and o-(allyloxy)arylaldehydes towards functionalized chroman-4-ones[J]. Chinese Chemical Letters, ;2020, 31(12): 3255-3258. doi: 10.1016/j.cclet.2020.03.007 shu

Visible-light induced cascade radical cyclization of sulfinic acids and o-(allyloxy)arylaldehydes towards functionalized chroman-4-ones

    * Corresponding author.
    E-mail addresses: wangzulichem@163.com wangzuli09@tsinghua.org.cn (Z.-L. Wang).
    1 These authors contributed equally to this work.
  • Received Date: 18 January 2020
    Revised Date: 27 February 2020
    Accepted Date: 27 February 2020
    Available Online: 15 December 2020

Figures(6)

  • An efficient method for the synthesis of functionalized chroman-4-ones induced by visible light via the radical cyclization reaction of sulfinic acids and o-(allyloxy)arylaldehydes at room temperature was described. The corresponding products were isolated with moderate to good yields. Radical mechanism was proposed for this transformation. Anti-microbial activity of some desired compounds were screened.
  • 加载中
    1. [1]

      T. Seifert, M. Malo, T. Kokkola, et al., J. Med. Chem. 57(2014) 9870-9888.  doi: 10.1021/jm500930h

    2. [2]

      T. Nishida, H. Yoshinaga, T. Toyoda, M. Toshima, Org. Process Res. Dev.16(2012) 625-634.  doi: 10.1021/op200357h

    3. [3]

      A. Gaspar, M.J. Matos, J. Garrido, E. Uriarte, F. Borges, Chem. Rev. 114(2014) 4960-4992.  doi: 10.1021/cr400265z

    4. [4]

      J. Fan, W. Sun, Z. Wang, et al., Chem. Commun. 50(2014) 9573-9576.  doi: 10.1039/C4CC03778B

    5. [5]

      L. Peng, Z. Hu, Z. Tang, Y. Jiao, X. Xu, Chin. Chem. Lett. 30(2019) 1481-1487.  doi: 10.1016/j.cclet.2019.04.008

    6. [6]

      S. Jung, J. Kim, S. Hong, Adv. Synth. Catal. 359(2017) 3945-3949.  doi: 10.1002/adsc.201701072

    7. [7]

      N.N. Zhou, M.X. Wu, M. Zhang, X.Q. Zhou, Asian J. Org. Chem. 8(2019) 828-831.  doi: 10.1002/ajoc.201900121

    8. [8]

      M.Y. Chang, Y.S. Wu, H.Y. Chen, Org. Lett. 20(2018) 1824-1827.  doi: 10.1021/acs.orglett.8b00316

    9. [9]

      X.K. He, B.G. Cai, Q.Q. Yang, L. Wang, J. Xuan, Chem. Asian J. 14(2019) 3269-3273.  doi: 10.1002/asia.201901078

    10. [10]

      Q. Liu, G.Q. Xie, Q. Wang, et al., Tetrahedron 75(2019) 130490-130498.  doi: 10.1016/j.tet.2019.130490

    11. [11]

      J. Sheng, J.D. Liu, L.Q. Chen, et al., Org. Chem. Front. 6(2019) 1471-1495.  doi: 10.1039/C9QO00292H

    12. [12]

      (a) Y.M. Xiao, Y. Liu, W.P. Mai, et al., ChemistrySelect 4(2019) 1939-1942;
      (b) D. Lu, Y. Wan, L. Kong, G. Zhu, Org. Lett. 19(2017) 2929-2932.

    13. [13]

      F.H. Xiao, C. Liu, D.H. Wang, H.W. Huang, G.J. Deng, GreenChem. 20(2018) 973-977.

    14. [14]

      W.C. Yang, P. Dai, K. Luo, Y.G. Ji, L. Wu, Adv. Synth. Catal. 359(2017) 2390-2395.  doi: 10.1002/adsc.201601407

    15. [15]

      J.J. Zhao, P. Li, X.J. Li, C.G. Xia, F.W. Li, Chem. Commun. 52(2016) 3661-3664.  doi: 10.1039/C5CC09730D

    16. [16]

      H. Hu, X.L. Chen, K. Sun, et al., Org. Lett. 20(2018) 6157-6160.  doi: 10.1021/acs.orglett.8b02627

    17. [17]

      H. Hu, X.L. Chen, K. Sun, et al., Org. Chem. Front. 5(2018) 2925-2929.  doi: 10.1039/C8QO00882E

    18. [18]

      L. Tang, Z. Yang, X.P. Chang, et al., Org. Lett. 20(2018) 6520-6525.  doi: 10.1021/acs.orglett.8b02846

    19. [19]

      J. Zhu, W.C. Yang, X.D. Wang, L. Wu, Adv. Synth. Catal. 360(2018) 386-400.  doi: 10.1002/adsc.201701194

    20. [20]

      (a) W.J. Zhou, Y.H. Zhang, Y.Y. Gui, L. Sun, D.G. Yu, Synthesis 50(2018) 3359-3378;
      (b) Z. Cao, Q. Zhu, Y.W. Lin, W.M. He, Chin. Chem. Lett. 30(2019) 2132-2138.

    21. [21]

      K. Luo, W.C. Yang, L. Wu, Asian J. Org. Chem. 6(2017) 350-367.  doi: 10.1002/ajoc.201600512

    22. [22]

      C. Huang, X.B. Li, C.H. Tung, L.Z. Wu, Chem. Eur. J. 24(2018) 11530-11534.  doi: 10.1002/chem.201800391

    23. [23]

      (a) D. Staveness, I.C. Bosque, R.J. Stephenson, Acc. Chem. Res. 49(2016) 2295-2306;
      (b) W. Yang, B. Li, M. Zhang, et al., Chin. Chem. Lett. 31(2020) 1313-1316;
      (c) L.Y. Xie, Y.S. Lu, H.R. Ding, et al., Chin. J. Catal. 41(2020) 1168-1173.

    24. [24]

      (a) T. Courant, G. Masson, J. Org. Chem. 81(2016) 6945-6952;
      (b) H. Xu, Y. Zhang, X. Lang, Chin. Chem. Lett. 31(2020) 1520-1524.

    25. [25]

      D.C. Fabry, M. Rueping, Acc. Chem. Res. 49(2016) 1969-1979.  doi: 10.1021/acs.accounts.6b00275

    26. [26]

      S. Cao, S.S. Zhong, L.T. Xin, J.P. Wan, C.P. Wen, ChemCatChem 7(2015) 1478-1482.  doi: 10.1002/cctc.201500139

    27. [27]

      S.Q. Zhu, A. Das, L. Bui, et al., J. Am. Chem. Soc. 135(2013) 1823-1829.  doi: 10.1021/ja309580a

    28. [28]

      X.Y. Yu, J.R. Chen, P.Z. Wang, et al., Angew. Chem. Int. Ed. 57(2018) 738-743.  doi: 10.1002/anie.201710618

    29. [29]

      H. Im, D. Kang, S. Choi, S. Shin, S. Hong, Org. Lett. 20(2018) 7437-7441.  doi: 10.1021/acs.orglett.8b03166

    30. [30]

      L. Zhang, J. Zhu, J. Ma, L. Wu, W.H. Zhang, Org. Lett. 19(2017) 6308-6311.  doi: 10.1021/acs.orglett.7b03052

    31. [31]

      G. Magallanes, M.D. Kärkäs, I. Bosque, et al., ACS Catal. 9(2019) 2252-2260.  doi: 10.1021/acscatal.8b04172

    32. [32]

      (a) H. Kaur, M. Kaur, P.K. Walia, M. Kumar, V. Bhalla, Chem. Asian J. 14(2019) 809-813;
      (b) L.Y. Xie, J.L. Hu, Y.X. Song, et al., ACS Sustainable Chem. Eng. 7(2019) 19993-19999.

    33. [33]

      W. Wei, P.L. Bao, H.L. Yue, et al., Org. Lett. 20(2018) 5291-5295.  doi: 10.1021/acs.orglett.8b02231

    34. [34]

      M. Lanzi, J. Merad, D.V. Boyarskaya, et al., Org. Lett. 20(2018) 5247-5250.  doi: 10.1021/acs.orglett.8b02196

    35. [35]

      Q.M. Kainz, C.D. Matier, A. Bartoszewicz, et al., Science 351(2016) 681-684.  doi: 10.1126/science.aad8313

    36. [36]

      (a) T.Y. Shang, L.H. Lu, Z. Cao, et al., Chem. Commun. 55(2019) 5408-5419;
      (b) W.B. He, L.Q. Gao, X.J. Chen, et al., Chin. Chem. Lett. 31(2020) 1895-1898.

    37. [37]

      Y. Gao, Y.Y. Liu, J.P. Wan, J. Org. Chem. 84(2019) 2243-2251.  doi: 10.1021/acs.joc.8b02981

    38. [38]

      (a) D. Yang, G. Li, C. Xing, et al., Org. Chem. Front. 5(2018) 2974-2979;
      (b) X. Mi, Y. Kong, J. Zhang, C. Pi, X. Cui, Chin. Chem. Lett. 30(2019) 2295-2298.

    39. [39]

      Q.S. Liu, L.L. Wang, H.L. Yue, et al., Green Chem. 21(2019) 1609-1613.  doi: 10.1039/C9GC00222G

    40. [40]

      Y. Yasu, T. Koike, M. Akita, Org. Lett. 15(2013) 2136-2139.  doi: 10.1021/ol4006272

    41. [41]

      (a) G. Li, Q. Yan, Z. Gan, et al., Org. Lett. 21(2019) 7938-7940;
      (b) X. Gong, Y. Ding, X. Fan, J. Wu, Adv. Synth. Catal. 359(2017) 2999-3004.

    42. [42]

      (a) J. Zhu, W.C. Yang, X.D. Wang, L. Wu, Adv. Synth. Catal. 360(2018) 386-400;
      (b) W. Yang, S. Yang, P. Li, L. Wang, Chem. Commun. 51(2015) 7520-7523.

    43. [43]

      (a) X.S. Wu, Y. Chen, M.B. Li, M.G. Zhou, S.K. Tian, J. Am. Chem. Soc. 134(2012) 14694-14697;
      (b) L. Wang, M. Zhang, Y. Zhang, et al., Chin. Chem. Lett. 31(2020) 67-70;
      (c) L.Y. Xie, Y.L. Chen, L. Qin, et al., Org. Chem. Front. 6(2019) 3950-3955.

    44. [44]

      Y.M. Xi, B.L. Dong, E.J. McClain, et al., Angew. Chem. Int. Ed. 53(2014) 4657-4661.  doi: 10.1002/anie.201310142

    45. [45]

      (a) W. Wei, H. Cui, D. Yang, et al., Org. Chem. Front. 4(2017) 26-30;
      (b) L. Wang, M. Zhang, Y. Zhang, et al., Chin. Chem. Lett. 31(2020) 67-70.

    46. [46]

      L.Y. Xie, S. Peng, F. Liu, et al., Org. Chem. Front. 5(2018) 2604-2609.  doi: 10.1039/C8QO00661J

    47. [47]

      W. Li, G. Yin, L. Huang, et al., Green Chem. 18(2016) 4879-4883.  doi: 10.1039/C6GC01196A

    48. [48]

      L. Xie, T. Fang, J. Tan, et al., Green Chem. 21(2019) 3858-3863.  doi: 10.1039/C9GC01175G

    49. [49]

      S. Kamijo, M. Hirota, K. Tao, M. Watanabe, T. Murafuji, Tetrahedron Lett. 55(2014) 5551-5554.  doi: 10.1016/j.tetlet.2014.08.011

    50. [50]

      (a) L.Y. Xie, S. Peng, J.X. Tan, et al., ACS Sustainable Chem. Eng. 6(2018) 16976-16981;
      (b) P. Qian, Y. Deng, H. Mei, et al., Org. Lett. 19(2017) 4798-4801;
      (c) L.Y. Xie, Y.J. Li, J. Qu, et al., Green Chem. 19(2017) 5642-5646;
      (d) P. Bao, L. Wang, Q. Liu, et al., Tetrahedron Lett. 60(2019) 214-218.

    51. [51]

      S. Cai, Y. Xu, D. Chen, et al., Org. Lett. 18(2016) 2990-2993.  doi: 10.1021/acs.orglett.6b01353

    52. [52]

      (a) L. Wang, Y. Zhang, M. Zhang, et al., Tetrahedron Lett. 60(2019) 1845-1848;
      (b) W.H. Bao, Z. Wang, X. Tang, et al., Chin. Chem. Lett. 30(2019) 2259-2262.

    53. [53]

      Y. Li, D. Zheng, Z. Li, J. Wu, Org. Chem. Front. 3(2016) 574-578.  doi: 10.1039/C6QO00060F

    54. [54]

      Y. Xiang, Y. Li, Y. Kuang, J. Wu, Chem. Eur. J. 23(2017) 1032-1035.  doi: 10.1002/chem.201605336

    55. [55]

      D.Q. Dong, L.X. Li, G.H. Li, et al., Chin. J. Catal. 40(2019) 1494-1498.  doi: 10.1016/S1872-2067(19)63420-0

    56. [56]

      G.H. Li, D.Q. Dong, Q. Deng, S.Q. Yan, Z.L. Wang, Synthesis 51(2019) 3313-3319.  doi: 10.1055/s-0037-1611787

    57. [57]

      (a) D.Q. Dong, W.J. Chen, Y. Yang, X. Gao, Z.L. Wang, ChemistrySelect 4(2019) 2480-2483;
      (b) Q.Q. Han, G.H. Li, Y.Y. Sun, et al., Tetrahedron Lett. 61(2020) 151704.

    58. [58]

      (a) G.H. Li, D.Q. Dong, X.Y. Yu, Z.L. Wang, New J. Chem. 43(2019) 1667-1670;
      (b) S.H. Hao, L.X. Li, D.Q. Dong, Z.L. Wang, Chin. J. Catal. 38(2017) 1664-1667;
      (c) D.Q. Dong, S.H. Hao, H. Zhang, Z.L. Wang, Chin. Chem. Lett. 28(2017) 1597-1599.

    59. [59]

      (a) D.Q. Dong, W.J. Chen, D.M. Chen, et al., Chin. J. Org. Chem. 39(2019) 3190-3198;
      (b) S. Yan, D.Q. Dong, C. Xie, W. Wang, Z.L. Wang, Chin. J. Org. Chem. 39(2019) 2560-2566.

    60. [60]

      G.H. Li, D.Q. Dong, Y. Yang, X.Y. Yu, Z.L. Wang, Adv. Synth. Catal. 361(2019) 832-835.

    61. [61]

      L.Y. Xie, T.G. Fang, J.X. Tan, et al., Green Chem. 21(2019) 3858-3863.  doi: 10.1039/C9GC01175G

    62. [62]

      (a) W. Wei, H. Cui, D. Yang, et al., Green Chem. 19(2017) 5608-5613;
      (b) S. Peng, Y.X. Song, J.Y. He, et al., Chin. Chem. Lett. 30(2019) 2287-2290.

  • 加载中
    1. [1]

      Xu JianKuang ZhijieSong Qiuling . Expedient chemoselective and catalyst-free synthesis of 3, 3-difluorochroman-4-ones from o-hydroxyarylenaminones and Selectfluor. Chinese Chemical Letters, 2018, 29(6): 963-966. doi: 10.1016/j.cclet.2017.10.027

    2. [2]

      E. S. BAEISSAR. M. MOHAMED . Enhancement of photocatalytic properties of Ga2O3-SiO2 nanoparticles by Pt deposition. Chinese Journal of Catalysis, 2013, 34(6): 1167-1172. doi: 10.1016/S1872-2067(12)60570-1

    3. [3]

      Wen Hui Zhong Ying Na Cui Shen Min Li Ying Ping Jia Jing Mei Yin . The carbonylation of phenyl bromide and its derivatives under visible light irradiation. Chinese Chemical Letters, 2012, 23(1): 29-32. doi: 10.1016/j.cclet.2011.09.024

    4. [4]

      PARK ChongYeonGHOSH TrishaMENG ZeDaKEFAYAT UllahVIKRAM NikamOH WonChun . Preparation of CuS-graphene oxide/TiO2 composites designed for high photonic effect and photocatalytic activity under visible light. Chinese Journal of Catalysis, 2013, 34(4): 711-717. doi: 10.1016/S1872-2067(11)60502-0

    5. [5]

      Ze-Da MengLei ZhuKefayat UllahShu YeQian SunWon-Chun Oh . Enhanced visible light photocatalytic activity of Ag2S-graphene/TiO2 nanocomposites made by sonochemical synthesis. Chinese Journal of Catalysis, 2013, 34(8): 1527-1533. doi: 10.1016/S1872-2067(12)60611-1

    6. [6]

      Hui WangBi-Li WangShu-Yun Ma . Synthesis of visible-light-driven TiO2 yolk-shell spheres with {0 0 1} facets dominated mesoporous shells. Chinese Chemical Letters, 2013, 24(3): 260-263.

    7. [7]

      Li XiaoweiWang BinYin WenxuanDi JunXia JiexiangZhu WenshuaiLi Huaming . Cu2+ Modified g-C3N4 Photocatalysts for Visible Light Photocatalytic Properties. Acta Physico-Chimica Sinica, 2020, 36(3): 1902001-0. doi: 10.3866/PKU.WHXB201902001

    8. [8]

      R. M. MohamedE. Aazam . Synthesis and characterization of P-doped TiO2 thin-films for photocatalytic degradation of butyl benzyl phthalate under visible-light irradiation. Chinese Journal of Catalysis, 2013, 34(6): 1267-1273. doi: 10.1016/S1872-2067(12)60572-5

    9. [9]

      Lu WangHuaiyu WangWeidong MengXiu-Hua XuYangen Huang . Facile syntheses of 3-trifluoromethylthio substituted thioflavones and benzothiophenes via the radical cyclization. Chinese Chemical Letters, 2021, 32(1): 389-392. doi: 10.1016/j.cclet.2020.02.040

    10. [10]

      Xu HuiZhang Yu-FeiLang Xianjun . TEMPO visible light photocatalysis: The selective aerobic oxidation of thiols to disulfides. Chinese Chemical Letters, 2020, 31(6): 1520-1524. doi: 10.1016/j.cclet.2019.10.024

    11. [11]

      Ge YanqinDiao PinhuiXu ChenZhang NannanGuo Cheng . Visible light induced cross-coupling synthesis of asymmetrical heterobiaryls using Pd/CeO2 nanocomposite photocatalyst. Chinese Chemical Letters, 2018, 29(6): 903-906. doi: 10.1016/j.cclet.2018.01.002

    12. [12]

      Wang LiWang YiChen DongYang Wantai . Visible light-induced thione-ene cycloaddition reaction for the surface modification of polymeric materials. Chinese Chemical Letters, 2018, 29(1): 157-160. doi: 10.1016/j.cclet.2017.08.001

    13. [13]

      Zhang MinxianHe JieChen YiboLiao Pei-YuLiu Zhao-QingZhu Mingshan . Visible light-assisted peroxydisulfate activation via hollow copper tungstate spheres for removal of antibiotic sulfamethoxazole. Chinese Chemical Letters, 2020, 31(10): 2721-2724. doi: 10.1016/j.cclet.2020.05.001

    14. [14]

      Wang YixuanHe FengtingChen LinShang JieWang JiajiaShuaijun WangSong HuiminZhang JinqiangZhao ChaochengWang ShaobinSun Hongqi . Acidification and bubble template derived porous g-C3N4 for efficient photodegradation and hydrogen evolution. Chinese Chemical Letters, 2020, 31(10): 2668-2672. doi: 10.1016/j.cclet.2020.08.003

    15. [15]

      Zhang NannanZuo HangdongXu ChenPan JunyiSun JunGuo Cheng . Visible light induced the high-efficiency spirocyclization reaction of propynamide and thiophenols via recyclable catalyst Pd/ZrO2. Chinese Chemical Letters, 2020, 31(2): 337-340. doi: 10.1016/j.cclet.2019.06.008

    16. [16]

      Zhang HongminHe JieZhai ChunyangZhu Mingshan . 2D Bi2WO6/MoS2 as a new photo-activated carrier for boosting electrocatalytic methanol oxidation with visible light illumination. Chinese Chemical Letters, 2019, 30(12): 2338-2342. doi: 10.1016/j.cclet.2019.07.021

    17. [17]

      Li ZhijianWang YaoA. Elzatahry AhmedYang XuanyuPu ShouzhiLuo WeiCheng XiaoweiDeng Yonghui . Stepwise construction of Pt decorated oxygen-deficient mesoporous titania microspheres with core-shell structure and magnetic separability for efficient visible-light photocatalysis. Chinese Chemical Letters, 2020, 31(6): 1598-1602. doi: 10.1016/j.cclet.2019.10.016

    18. [18]

      Zhang PengWang JiquanLi YuanJiang LishaWang ZhuangzhuangZhang Gaoke . Non-Noble-Metallic Cocatalyst Ni2P Nanoparticles Modified Graphite-Like Carbonitride with Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation. Acta Physico-Chimica Sinica, 2021, 37(8): 2009102-0. doi: 10.3866/PKU.WHXB202009102

    19. [19]

      Zhou ChaoDiao PinhuiLi XiaojiGe YanqinGuo Cheng . Facile photochemical synthesis of α-ketoamides and quinoxalines from amines and benzoylacetonitrile under mild conditions. Chinese Chemical Letters, 2019, 30(2): 371-374. doi: 10.1016/j.cclet.2018.06.019

    20. [20]

      He RonganChen RongLuo JinhuaZhang ShiyingXu Difa . Fabrication of Graphene Quantum Dots Modified BiOI/PAN Flexible Fiber with Enhanced Photocatalytic Activity. Acta Physico-Chimica Sinica, 2021, 37(6): 2011022-0. doi: 10.3866/PKU.WHXB202011022

Metrics
  • PDF Downloads(2)
  • Abstract views(78)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return