Citation: Dongyang Li, Chen Weijie, Hua Liu Sheng, Chen Xiaoqiang, Yin Jun. The regulation of biothiol-responsive performance and bioimaging application of benzo[c][1, 2, 5]oxadiazole dyes[J]. Chinese Chemical Letters, ;2020, 31(11): 2891-2896. doi: 10.1016/j.cclet.2020.02.047 shu

The regulation of biothiol-responsive performance and bioimaging application of benzo[c][1, 2, 5]oxadiazole dyes

    * Corresponding author at: Key Laboratory of Pesticide and Chemical Biology Ministry of Education Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry Central China Normal University Wuhan 430079 China.
    E-mail address: (J. Yin).
  • Received Date: 27 December 2019
    Revised Date: 21 February 2020
    Accepted Date: 21 February 2020
    Available Online: 15 November 2020


  • The different oxidation states of sulphur atom play a significant role on functional materials. In this work, a aryl-thioether and its sulphone substituted benzo[c][1, 2, 5]oxadiazole dyes were synthesized and utilized to determine thiol-containing amino acids. The result of selectivity experiments showed they detected the cysteine and homocysteine under physiological condition with negligible interference from other amino acids. In comparison to the thioether dye, the sulphone-based dye exhibited much faster response time for Cys and Hcy. However, the sulphone restricted its thiol-reactivity and bioimaging performance in living cells. By reducing the oxidation state of sulphur atom, we amazedly found that the sulfoxide-based dye still maintained high selectivity ultrafast response time for Cys/Hcy under physiological condition. It was worth mentioning that it also had high reactivity and good bioimaging performance that sulfone compounds did not have.
  • 加载中
    1. [1]

      (a) S.Y. Zhang, C.N. Ong, H.M. Shen, Cancer Lett. 208 (2004) 143-153;
      (b)Z.A.Wood, E.Schröder, J.R.Harris, L.B.Poole, TrendsBiochem.Sci.28 (2003)32-40.

    2. [2]

      (a) S. Shahrokhian, Anal. Chem. 73(2001) 5972-5978;
      (b) T.P. Dalton, H.G. Shertzer, A. Puga, Annu. Rev. Pharmacol. Toxicol. 39 (1999) 67-101.

    3. [3]

      (a) Y.K. Yue, F.J. Huo, F.Q. Cheng, et al., Chem. Soc. Rev. 48 (2019) 4155-4177;
      (b) Z.Q. Guo, Y.G. Ma, Y.J. Liu, et al., Sci. China Chem. 61 (2018) 1293-1300;
      (c) L.J. Tang, M.G. Tian, H.B. Chen, et al., Dyes Pigm. 158 (2018) 482-489;
      (d) P. Ning, W.J. Wang, M. Chen, Y. Feng, X.M. Meng, Chin. Chem. Lett. 28 (2017) 1943-1951.

    4. [4]

      (a) H. Zhang, K. Li, L.L. Li, et al., Chin. Chem. Lett. 30 (2019) 1063-1066;
      (b) Y.K. Yue, F.J. Huo, X.Q. Li, et al., Org. Lett. 19 (2017) 82-85;
      (c) F.J. Huo, Y.Q. Sun, J. Su, et al., Org. Lett. 11 (2009) 4918-4921;
      (d) Y.F. Kang, L.Y. Niu, Q.Z. Yang, Chin. Chem. Lett. 30 (2019) 1791-1798;
      (e) L. Yang, H.Q. Xiong, Y.N. Su, et al., Chin. Chem. Lett. 30 (2019) 563-565;
      (f) Y. Yang, H. Wang, Y.L. Wei, J. Zhou, et al., Chin. Chem. Lett. 28 (2017) 2023-2026;
      (g) M.Y. Li, P.C. Cui, K. Li, et al., Chin. Chem. Lett. 29 (2018) 992-994;
      (h) S. Lee, J. Li, X. Zhou, J. Yin, J. Yoon, Coord. Chem. Rev. 366 (2018) 29-68;
      (i) J.C. Xu, H.Q. Yuan, L.T. Zeng, G.M. Bao, Chin. Chem. Lett. 29 (2018) 1456-1464;
      (j) C.X. Yin, K.M. Xiong, F.J. Huo, J.C. Salamanca, R.M. Strongin, Angew. Chem. Int. Ed. 56 (2017) 13188-13198;
      (k) L.Y. Niu, Y.Z. Chen, H.R. Zheng, et al., Chem. Soc. Rev. 44 (2015) 6143-6160.

    5. [5]

      (a) L.Y. Niu, Y.S. Guan, Y.Z. Chen, et al., J. Am. Chem. Soc. 134 (2012) 18928-18931;
      (b) J. Liu, Y.Q. Sun, Y.Y. Huo, et al., J. Am. Chem. Soc. 136 (2014) 574-577;
      (c) Y.K. Yue, F.J. Huo, P. Ning, et al., J. Am. Chem. Soc. 139 (2017) 3181-3185;
      (d) K. Umezawa, M. Yoshida, M. Kamiya, T. Yamasoba, Y. Urano, Nat. Chem. 9 (2017) 279-286;
      (e) H.H. Song, Y.M. Zhou, H.N. Qu, et al., Ind. Eng. Chem. Res. 57 (2018) 15216-15223;
      (f) S.Y. Lim, K.H. Hong, D.I. Kim, H. Kwon, H.J. Kim, J. Am. Chem. Soc. 136 (2014) 7018-7025;
      (g) J. Yin, Y. Kwon, D. Kim, et al., J. Am. Chem. Soc. 136 (2014) 5351-5358;
      (h) M.H. Lee, J.H. Han, P.S. Kwon, et al., J. Am. Chem. Soc.134 (2012) 1316-1322;
      (i) G.X. Yin, T.T. Niu, T. Yu, et al., Angew. Chem. Int. Ed. 58 (2019) 4557-4561;
      (j) B. Tang, Y.L. Xing, P. Li, et al., J. Am. Chem. Soc. 129 (2007) 11666-11667;
      (k) T.B. Ren, Q.L. Zhang, D.D. Su, et al., Chem. Sci. 9 (2018) 5461-5466;
      (l) L.W. He, X.L. Yang, K.X. Xu, X.Q. Kong, W.Y. Lin, Chem. Sci. 8 (2017) 6257-6265.

    6. [6]

      (a) Z.Q. Xu, X.T. Huang, M.X. Zhang, et al., Anal. Chem. 91 (2019) 11343-11348;
      (b) Z.Q. Xu, M.X. Zhang, G.J. Li, et al., Dyes Pigm. 171 (2019)107685;
      (c) X. Han, Y.H. Liu, G.T. Liu, et al., Chem. Asian J. 14 (2019) 890-895;
      (d) Z.Q. Xu, X.T. Huang, X. Han, et al., Chem 7 (2018) 1609-1628;
      (e) G. Liu, X. Han, J. Zhang, et al., Dyes Pigm. 148 (2018) 292-297;
      (f) G.T. Liu, W.J. Chen, Z.Q. Xu, Org. Biomol. Chem. 16 (2018) 5517-5523;
      (g) M.J. Cao, H.Y. Chen, D. Chen, et al., Chem. Commun. 52 (2016) 721-724.

    7. [7]

      (a) J. Liu, Y.Q. Sun, H.X. Zhang, et al., Chem. Sci. 5 (2014) 3183-3188;
      (b) D.H. Ma, D. Kim, E. Seo, S.J. Lee, K.H. Ahn, Analyst 140 (2015) 422-427;
      (c) F.Y. Wang, L. Zhou, C.C. Zhao, et al., Chem. Sci. 6 (2015) 2584-2589;
      (d) L. Song, Q. Sun, N. Wang, et al., Anal. Methods 7 (2015) 10371-10375;
      (e) D. Lee, G. Kim, J. Yin, J. Yoon, Chem. Commun. 51 (2015) 6518-6520;
      (f) C.Y. Zhang, S. Wu, Z. Xi, L. Yi, Tetrahedron 73 (2017) 6651-6656;
      (g) D. Lee, K. Jeong, X. Luo, et al., J. Mater. Chem. B 6 (2018) 2541-2546;
      (h) S.G. Wang, H.H. Yin, Y. Huang, X.M. Guan, Anal. Chem. 90 (2018) 8170-8177;
      (i) J.M. Wang, L.Q. Niu, J. Huang, et al., Dyes Pigm. 158 (2018) 151-156;
      (j) J.H. Gao, Y.F. Tao, J. Zhang, et al., Chem. Eur. J. 25 (2019) 11246-11256.

    8. [8]

      (a) X.L. Sheng, D. Chen, M.J. Cao, et al., Chin. J. Chem. 34 (2016) 594-598;
      (b) Z.Q. Xu, M.X. Zhang, Y. Xu, et al., Sens. Actuators B 290 (2019) 676-683.

    9. [9]

      Y.J. Jiang, J. Cheng, C.Y. Yang, et al., Chem. Sci. 8(2017) 8012-8018.  doi: 10.1039/C7SC03338A

    10. [10]

      L.Y. Niu, H.R. Zheng, Y.Z. Chen, et al., Analyst 139(2014) 1389-1395.  doi: 10.1039/c3an01849k

    11. [11]

      B.C. Zhu, M. Zhang, L. Wu, et al., Sens. Actuators B 257(2018) 436-441.  doi: 10.1016/j.snb.2017.10.170

  • 加载中
    1. [1]

      Mehdi Bakavoli Alireza Motavalizadeh Kakhky Ali Shiri Mahdieh Ghabdian Abolghasem Davoodnia Hossein Eshghi Mola Khatami . Selective and mild oxidation of sulfides to sulfoxides by H2O2 using DBUH-Br3 as catalyst. Chinese Chemical Letters, 2010, 21(6): 651-655. doi: 10.1016/j.cclet.2010.01.004

    2. [2]

      Arash Ghorbani-Choghamarani Mina Abbasi . Poly(4-vinylpyridinium tribromide) as metal-free,green and recoverable oxidizing polymer for the chemoselective oxidation of sulfides into sulfoxides. Chinese Chemical Letters, 2011, 22(1): 114-118. doi: 10.1016/j.cclet.2010.09.011

    3. [3]

      Liu Guang-JianLi Cui-YunZhang Xiao-TaiDu WeiGu Zhen-YuanXing Guo-Wen . Modulation of the stereoselectivity and reactivity of glycosylation via (p-Tol)2SO/Tf2O preactivation strategy: From O-, C-sialylation to general O-, N-glycosylation. Chinese Chemical Letters, 2018, 29(1): 1-10. doi: 10.1016/j.cclet.2017.09.034

    4. [4]

      Gabriel MoralesJuan A. MeleroMarta PaniaguaJose IglesiasBlanca HernándezMaría Sanz . Sulfonic acid heterogeneous catalysts for dehydration of C6-monosaccharides to 5-hydroxymethylfurfural in dimethyl sulfoxide. Chinese Journal of Catalysis, 2014, 35(5): 696-707. doi: 10.1016/S1872-2067(14)60020-6

    5. [5]

      Maryam HajjamiFarshid GhorbaniSedighe RahimipanahSafoora Roshani . Efficient preparation of Zr(IV)-salen grafted mesoporous MCM-41 catalyst for chemoselective oxidation of sulfides to sulfoxides and Knoevenagel condensation reactions. Chinese Journal of Catalysis, 2015, 36(11): 1852-1860. doi: 10.1016/S1872-2067(15)60968-8

    6. [6]

      Xu JiaoZhang LihongZhang MeiqiLiu XiuboMa WeiTang YixinWang Daolin . Iodine-Dimethyl sulfoxide Promoted Synthesis of Novel Tetracyclic Thiazolo[3', 2': 2, 3]pyrido[4, 5-d]pyrido[1, 2-a]pyrimidinones. Chinese Journal of Organic Chemistry, 2019, 39(10): 2808-2812. doi: 10.6023/cjoc201904033

    7. [7]

      Yu Song-BaiZang Hong-JunYang Xiao-LiZhang Ming-ChuanXie Rui-RuiYu Pei-Fei . Highly efficient preparation of 5-hydroxymethylfurfural from sucrose using ionic liquids and heteropolyacid catalysts in dimethyl sulfoxide-water mixed solvent. Chinese Chemical Letters, 2017, 28(7): 1479-1484. doi: 10.1016/j.cclet.2017.02.016

    8. [8]

      Issa Yavari Samira Nasiri-Gheidari Anvar Mirzaei . Isoquinoline-mediated S-vinylation and N-vinylation of benzo[d]oxazole-2-thiol and benzo[d]thiazole-2-thiol. Chinese Chemical Letters, 2012, 23(1): 5-8. doi: 10.1016/j.cclet.2011.10.001

    9. [9]

      Wei Shuo FANG Ying LIU Qi Cheng FANG . First Synthesis of 2α-Thiol Ether Analog of Docetaxel. Chinese Chemical Letters, 2002, 13(8): 708-710.

    10. [10]

      Chun Nuan JI Xiu Juan ZHANG Rong Jun QU Hou CHEN Chun Hua WANG Chang Mei SUN . Synthesis and Adsorption Properties of Chelating Resins Containing Sulfoxide and Heterocyclic Functional Groups. Chinese Chemical Letters, 2006, 17(10): 1313-1316.

    11. [11]

      XU Han . Syntheses, Crystal Structures and Fluorescence Properties of Two Compounds Constructed by Aromatic Carboxylates and 4, 4′-Bis (imidazol-l-yl)-phenyl Sulphone. Chinese Journal of Inorganic Chemistry, 2016, 32(8): 1481-1486. doi: 10.11862/CJIC.2016.194

    12. [12]

      Xiao Ya YUAN Hai Yan LI Zheng Pu ZHANG P. HODGE . Immobilizing BINOL via Suzuki Reaction: Synthesis and Application in Catalytic Asymmetric Oxidation of Sulfide to Sulfoxide. Chinese Chemical Letters, 2006, 17(7): 911-912.

    13. [13]


    14. [14]


    15. [15]

      Liu YufengCao ZhongzhongSu MiaodongLi HuiFu MeiqiangLiu QiangLuo WeipingGuo Cancheng . Iron(Ⅲ) Porphyrin Catalyzed Cyclization of Ketones with Dimethyl Sulfoxide and Ammonium Acetate: One-Pot Synthesis of Pyridines. Chinese Journal of Organic Chemistry, 2019, 39(1): 129-136. doi: 10.6023/cjoc201809014

    16. [16]

      Wu HaoMa NanaSong MengxiaoZhang Guisheng . Dimethyl sulfoxide-aided copper(0)-catalyzed intramolecular decarbonylative rearrangement of N-aryl isatins leading to acridones. Chinese Chemical Letters, 2020, 31(6): 1580-1583. doi: 10.1016/j.cclet.2019.10.043

    17. [17]

      Long Liu Jia Hui Kou Da Meng Guo Jing Yang Hong Lin Liu Hong Xia Yu Sheng Chu Ke Ren Jiang Ying Wang Zhi Gang Zou . Synthesis of thiol-functionalized TiO 2 nanocomposite and photocatalytic degradation for PAH under visible light irradiation. Chinese Chemical Letters, 2009, 20(11): 1366-1370. doi: 10.1016/j.cclet.2009.06.026

    18. [18]

      Jian HU Xiao Da YANG Kui WANG . The Different Fluorescent Response of Quin 2 to the Binding of Ca2+ and La3+ and its Application. Chinese Chemical Letters, 2004, 15(10): 1197-1120.

    19. [19]

      Tan JunjiangHu JinyongRen JianxuPeng JinfengLiu CanSong YiqiaoZhang Yong . Fast response speed of mechanically exfoliated MoS2 modified by PbS in detecting NO2. Chinese Chemical Letters, 2020, 31(8): 2103-2108. doi: 10.1016/j.cclet.2020.03.060

    20. [20]

      LI Guo-XiaYANG XuHAI Li-SiCHAI Zhan-LiWANG Xiao-Jing . Tuning of NaTaO3 Band Structure through Mn2+ Ion Doping and the Enhanced Visible Light Response. Chinese Journal of Structural Chemistry, 2014, 33(5): 771-778.

  • PDF Downloads(0)
  • Abstract views(32)
  • HTML views(1)

通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By


DownLoad:  Full-Size Img  PowerPoint