Citation: Song Dengmeng, Gao Xuyun, Li Bo, Li Jun, Sun Xuzhuo, Li Chengbo, Zhao Jiale, Chen Lin, Wang Ning. Synthesis, structure and electrocatalytic H2-evoluting activity of a dinickel model complex related to the active site of [NiFe]-hydrogenases[J]. Chinese Chemical Letters, ;2020, 31(9): 2483-2486. doi: 10.1016/j.cclet.2020.01.033 shu

Synthesis, structure and electrocatalytic H2-evoluting activity of a dinickel model complex related to the active site of [NiFe]-hydrogenases

Figures(4)

  • Structural and functional biomimicking of the active site of [NiFe]-hydrogenases can provide helpful hints for designing bioinspired catalysts to replace the expensive noble metal catalysts for H2 generation and uptake. Treatment of dianion [Ni(phma)]2- [H4phma = N, N'-1, 2-phenylenebis(2-mercaptoacetamide)] with [NiCl2(dppp)] (dppp = bis(diphenylphosphino)propane) yielded a dinickel product [Ni(phma)(μ-S, S')Ni(dppp)] (1) as the model complex relevant to the active site of [NiFe]-H2ases. The structure of complex 1 has been characterized by single-crystal X-ray analysis. From cyclic voltammetry and controlled potential electrolysis studies, complex 1 was found to be a moderate electrocatalyst for the H2-evoluting reaction using ClCH2COOH as the proton source.
  • 加载中
    1. [1]

      (a) M. Can, F.A. Armstrong, S.W. Ragsdale, Chem. Rev. 114(2014) 4149-4174;
      (b) T.R. Simmons, G. Berggren, M. Bacchi, M. Fontecave, V. Artero, Coord. Chem. Rev. 270-271(2014) 127-150;
      (c) Y.L. Hu, A.W. Fay, C.C. Lee, J. Yoshizawa, M.W. Ribbe, Biochemistry 47(2008) 3973-3981.

    2. [2]

      (a) Y.L. Li, T.B. Rauchfuss, Chem. Rev. 116(2016) 7043-7077;
      (b) J.F. Capon, F. Gloaguen, F.Y. Pétillon, P. Schollhammer, J. Talarmin, Coord. Chem. Rev. 253(2009) 1476-1494;
      (c) I.P. Georgakaki, L.M. Thomson, E.J. Lyon, M.B. Hall, M.Y. Darensbourg, Coord. Chem. Rev. 238-239(2003) 255-266;
      (d) N. Wang, M. Wang, L. Chen, L. Sun, Dalton Trans. 42(2013) 12059-12071;
      (e) Y. Zhao, X. Yu, H. Hu, et al., Chin. Chem. Lett. 29(2018) 1651-1655.

    3. [3]

      (a) S. Ogo, Coord. Chem. Rev. 334(2017) 43-53;
      (b) D.J. Evans, C.J. Pickett, Chem. Soc. Rev. 32(2003) 268-275;
      (c) J.A. Denny, M.Y. Darensbourg, Chem. Rev. 115(2015) 5248-5273;
      (d) D. Schilter, J.M. Camara, M.T. Huynh, S. Hammes-Schiffer, T.B. Rauchfuss, Chem. Rev. 116(2016) 8693-8749.

    4. [4]

      (a) S. Ogo, R. Kabe, K. Uehara, et al., Science 316(2007) 585-587;
      (b) S. Ogo, K. Ichikawa, T. Kishima, et al., Science 339(2013) 682-684;
      (c) D. Brazzolotto, M. Gennari, N. Queyriaux, et al., Nat. Chem. 8(2016) 1054-1060;
      (d) W. Zhu, A.C. Marr, Q. Wang, et al., PNAS 102(2005) 18280-18285;
      (e)V.Fourmond, S.Canaguier, B.Golly, etal., EnergyEnviron.Sci.4(2011)2417-2427;
      (f) S. Ding, P. Ghosh, A.M. Lunsford, et al., J. Am. Chem. Soc. 138(2016) 12920-12927;
      (g) D.H. Manz, P.C. Duan, S. Dechert, et al., J. Am. Chem. Soc. 139(2017) 16720-16731.

    5. [5]

      (a) D. Brazzolotto, L. Wang, H. Tang, et al., ACS Catal. 8(2018) 10658-10667;
      (b) Y.X.C. Goh, H.M. Tang, W.L.J. Loke, W. Fan, Inorg. Chem. 58(2019) 12178-12183;
      (c) C.U. Perotto, C.L. Sodipo, G.J. Jones, et al., Inorg. Chem. 57(2018) 2558-2569;
      (d) G. Gezer, S. Verbeek, M.A. Sieglerb, E. Bouwman, Dalton Trans. 46(2017) 13590-13596;
      (e) B.E. Barton, C.M. Whaley, T.B. Rauchfuss, D.L. Gray, J. Am. Chem. Soc. 131(2009) 6942-6943;
      (f) L. Song, Y. Lu, L. Zhu, Q.L. Li, Organometallics 36(2017) 750-760;
      (g) P. Sun, D. Yang, Y. Li, et al., Organometallics 35(2016) 751-757;
      (h) O.A. Ulloa, M.T. Huynh, C.P. Richers, et al., J. Am. Chem. Soc. 138(2016) 9234-9245;
      (i) K. Weber, T. Krämer, H.S. Shafaat, et al., J. Am. Chem. Soc. 134(2012) 20745-20755;
      (j) X. Chu, J. Jin, B. Ming, et al., Chem. Sci. 10(2019) 761-767.

    6. [6]

      (a) M.A. Turner, W.L. Driessen, J. Reedijk, Inorg. Chem. 29(1990) 3331-3335;
      (b) P.V. Rao, S. Bhaduri, J. Jiang, R.H. Holm, Inorg. Chem. 43(2004) 5833-5849.

    7. [7]

      (a) N. Wang, M. Wang, Y. Wang, et al., J. Am. Chem. Soc. 135(2013) 13688-13691;
      (b) D. Zheng, N. Wang, M. Wang, et al., J. Am. Chem. Soc. 136(2014) 16817-16823;
      (c) D. Li, C.N. Lin, S.Z. Zhan, C.L. Ni, Chin. Chem. Lett. 28(2017) 1424-1428.

    8. [8]

      A.J. Bard, L.R. Faulkner, Electrochemical Methods:Fundamentals and Applications, 2nd ed., Wiley, New York, 2001.

    9. [9]

      (a) S.E. Duff, J.E. Barclay, S.C. Davies, D.J. Evans, Inorg. Chem. Commun. 8(2005) 170-173;
      (b) D.J. Evans, Eur. J. Inorg. Chem. 22(2005) 4527-4532.

    10. [10]

      Ø. Hatlevik, M.C. Blanksma, V. Mathrubootham, A.M. Arif, E.L. Hegg, J. Biol. Inorg. Chem. 9(2004) 238-246.  doi: 10.1007/s00775-003-0518-8

    11. [11]

      G.A.N. Felton, R.S. Glass, D.L. Lichtenberger, D.H. Evans, Inorg. Chem. 45(2006) 9181-9184.  doi: 10.1021/ic060984e

    12. [12]

      (a) J.M. Savéant, K.B. Su, J. Electroanal. Chem. 191(1984) 341-349;
      (b) E.S. Rountree, B.D. McCarthy, T.T. Eisenhart, J.L. Dempsey, Inorg. Chem. 53(2014) 9983-10002;
      (c) K.J. Lee, B.D. McCarthy, E.S. Rountree, J.L. Dempsey, Inorg. Chem. 56(2017) 1988-1998.

    13. [13]

      A.M. Appel, M.L. Helm, ACS Catal. 4(2014) 630-633.  doi: 10.1021/cs401013v

    14. [14]

      C. Costentin, J.M. Savéant, Chem. Electro. Chem. 1(2014) 1226-1236.

    15. [15]

      C. Costentin, S. Drouet, M. Robert, J.M. Savéant, J. Am. Chem. Soc. 134(2012) 11235-11242.  doi: 10.1021/ja303560c

    16. [16]

      C.P. Yap, K. Hou, A.A. Bengali, W.Y. Fan, Inorg. Chem. 56(2017) 10926-10931.  doi: 10.1021/acs.inorgchem.7b01079

    17. [17]

      (a) M.L. Helm, M.P. Stewart, R.M. Bullock, M.R. DuBois, D.L. DuBois, Science 333(2011) 863-866;
      (b) R. Tatematsu, T. Inomata, T. Ozawa, H. Masuda, Angew. Chem. Int. Ed. 55(2016) 5247-5250.

  • 加载中
    1. [1]

      Dong Jin Qian Ai Rong Liu Chikashi Nakamura Stephan Olav Wenk Jun Miyake . Photoinduced hydrogen evolution in an artificial system containing photosystem I,hydrogenase,methyl viologen and mercaptoacetic acid. Chinese Chemical Letters, 2008, 19(5): 607-610. doi: 10.1016/j.cclet.2008.03.015

    2. [2]

      Jahan-Bakhsh RaoofSayed Reza HosseiniSeyedeh Zeinab Mousavi-Sani . Improved hydrogen evolution on glassy carbon electrode modified with novel Pt/cetyltrimethylammonium bromide nanoscale aggregates. Chinese Journal of Catalysis, 2015, 36(2): 216-220. doi: 10.1016/S1872-2067(14)60207-2

    3. [3]

      Na WANG Ruo YUAN Ya Qin CHAI Dian Ping TANG Qiang ZHU Xue Lian LI . Electrocatalytic Oxidation of NADH Based on Self-assembled Colloidal Gold and Nafion Matrixes and Co Complex Mediator. Chinese Chemical Letters, 2006, 17(5): 683-686.

    4. [4]

      Yuan ZhangChen-Yan WeiTian-Fu Liu . Structure and magnetic property of bimetallic hexanuclear cluster based on 5-chlorosalicylaldehyde oxime. Chinese Chemical Letters, 2014, 25(6): 937-940. doi: 10.1016/j.cclet.2014.01.009

    5. [5]

      Mohammad Mazloum-ArdakaniMahboobe AbolhasaniBibi-Fatemeh MirjaliliMohammad Ali Sheikh-MohseniAfsaneh Dehghani-FirouzabadiAlireza Khoshroo . Electrocatalysis of dopamine in the presence of uric acid and folic acid on modified carbon nanotube paste electrode. Chinese Journal of Catalysis, 2014, 35(2): 201-209. doi: 10.1016/S1872-2067(12)60734-7

    6. [6]

      He-Sheng ZhaiLei CaoXing-Hua Xia . Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction. Chinese Chemical Letters, 2013, 24(2): 103-106.

    7. [7]

      Yuan Zhen Zhou Hui Wang She Ying Dong An Xiang Tian Zhi Xian He Bin Chen . Direct electrochemistry and electrocatalysis of myoglobin in dodecyltrimethylammonium bromide film modified carbon ceramic electrode. Chinese Chemical Letters, 2011, 22(4): 465-468. doi: 10.1016/j.cclet.2010.11.012

    8. [8]

      Ming Hua ZHOU Zu Cheng WU Da Hui WANG . A Novel Electrocatalysis Method for Organic Pollutants Degradation. Chinese Chemical Letters, 2001, 12(10): 929-932.

    9. [9]

      Si Chang SHAO Dun Ru ZHU Tian Wei WANG Yong ZHANG S. Shanmuga Sundara RAJ Hoong Kun FUN . Synthesis and Crystal Structure of[NiL2(H2O)2](ClO4)2 L=MBPT=4-p-methylphenyl-3, 5-bis-(pyridin-2-yl)-1, 2, 4-triazole. Chinese Chemical Letters, 2000, 11(1): 93-94.

    10. [10]

      Pan JinboShen ShengZhou WeiTang JieDing HongzhiWang JinboChen LangAu Chak-TongYin Shuang-Feng . Recent Progress in Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2020, 36(3): 1905068-0. doi: 10.3866/PKU.WHXB201905068

    11. [11]

      Li WeidongLiu YuanWang BoyangSong HaoqiangLiu ZhongyiLu SiyuYang Bai . Kilogram-scale synthesis of carbon quantum dots for hydrogen evolution, sensing and bioimaging. Chinese Chemical Letters, 2019, 30(12): 2323-2327. doi: 10.1016/j.cclet.2019.06.040

    12. [12]

      Zhou DanJiang BeiYang RuiHou XiandengZheng Chengbin . One-step synthesis of monodispersed Pt nanoparticles anchored on 3D graphene foams and its application for electrocatalytic hydrogen evolution. Chinese Chemical Letters, 2020, 31(6): 1540-1544. doi: 10.1016/j.cclet.2019.11.014

    13. [13]

      Yu FanWang LaichunXing QiujuWang DengkeJiang XunhengLi GuangchaoZheng AnminAi FanrongZou Jian-Ping . Functional groups to modify g-C3N4 for improved photocatalytic activity of hydrogen evolution from water splitting. Chinese Chemical Letters, 2020, 31(6): 1648-1653. doi: 10.1016/j.cclet.2019.08.020

    14. [14]

      Mohammad Mazloum-ArdakaniFariba SabaghianAlireza KhoshrooHossein Naeimi . Simultaneous determination of the concentrations of isoproterenol, uric acid, and folic acid in solution using a novel nanostructure-based electrochemical sensor. Chinese Journal of Catalysis, 2014, 35(4): 565-572. doi: 10.1016/S1872-2067(14)60027-9

    15. [15]

      Andrzej JablonskiAdam Lewera . Improving the efficiency of a direct ethanol fuel cell by a periodic load change. Chinese Journal of Catalysis, 2015, 36(4): 496-501. doi: 10.1016/S1872-2067(14)60226-6

    16. [16]

      David SebastiánVincenzo BaglioShuhui SunAna C. TavaresAntonino S. Aricò . Facile synthesis of Zr- and Ta-based catalysts for the oxygen reduction reaction. Chinese Journal of Catalysis, 2015, 36(4): 484-489. doi: 10.1016/S1872-2067(14)60253-9

    17. [17]

      Hadi BEITOLLAHIAlireza MOHADESIFarzaneh GHORBANIHassan KARIMI MALEHMehdi BAGHAYERIRahman HOSSEINZADEH . Electrocatalytic measurement of methionine concentration with a carbon nanotube paste electrode modified with benzoylferrocene. Chinese Journal of Catalysis, 2013, 34(7): 1333-1338. doi: 10.1016/S1872-2067(12)60582-8

    18. [18]

      Hadi BEITOLLAHISomayeh MOHAMMADI . Voltammetric determination of ascorbic acid in the presence of acetaminophen and tryptophan using an improved carbon nanotube paste electrode. Chinese Journal of Catalysis, 2013, 34(6): 1098-1104. doi: 10.1016/S1872-2067(12)60544-0

    19. [19]

      Shi Chao Xu Bing Cheng Hu Wei You Zhou Cheng Guo Sun Zu Liang Liu . The synthesis, self-assembly and electrocatalytic property of a novel disulphide derivatised cobalt(Ⅱ) deuteroporphyrin. Chinese Chemical Letters, 2012, 23(2): 157-160. doi: 10.1016/j.cclet.2011.11.011

    20. [20]

      Mohammad Mazloum-Ardakani Zahra Taleat Hadi Beitollahi Hossein Naeimi . Electrocatalytic determination of epinephrine and uric acid using a novel hydroquinone modified carbon paste electrode. Chinese Chemical Letters, 2011, 22(6): 705-708. doi: 10.1016/j.cclet.2010.11.035

Metrics
  • PDF Downloads(2)
  • Abstract views(39)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return