Citation: Zhang Junlin, Zhou Jing, Bi Fuqiang, Wang Bozhou. Energetic materials based on poly furazan and furoxan structures[J]. Chinese Chemical Letters, ;2020, 31(9): 2375-2394. doi: 10.1016/j.cclet.2020.01.026 shu

Energetic materials based on poly furazan and furoxan structures

    * Corresponding author.
    E-mail address: wbz600@163.com (B.Wang).
  • Received Date: 26 October 2019
    Revised Date: 31 December 2019
    Accepted Date: 31 December 2019
    Available Online: 15 September 2020

Figures(34)

  • Furazan and furoxan represent fascinating explosophoric units with intriguing structures and unique properties. Compared with other nitrogen-rich heterocycles, most poly furazan and furoxan-based heterocycles demonstrate superior energetic performances due to the higher enthalpy of formation and density levels. A large variety of advanced energetic materials have been achieved based on the combination of furazan and furoxan moieties with different kinds of linkers and this review provides an overview of the development of energetic poly furazan and furoxan structures during the past decades, with their physical properties and detonation characteristics summarized and compared with traditional energetic materials. Various synthetic strategies towards these compact energetic structures are highlighted by covering the most important cyclization methods for construction of the hetercyclic scaffolds and the following modifications such as nitrations and oxidations. Given the synthetic availabilities and outstanding properties, energetic materials based on poly furazan and furoxan structures are undoubtedly listed as a promising candidate for the development of new-generation explosives, propellants and pyrotechnics.
  • 加载中
    1. [1]

      T.M. Klapötke, Chemistry of High-energy Materials, Walter de Gruyter GmbH & Co KG, Berlin, Germany, 2017. 

    2. [2]

      P.C. Wang, Y.G. Xu, Q.H. Lin, M. Lu, Chem. Soc. Rev. 47 (2018) 7522-7538.  doi: 10.1039/C8CS00372F

    3. [3]

      Q.H. Zhang, J.M. Shreeve, Chem. Rev. 114 (2014) 10527-10574.  doi: 10.1021/cr500364t

    4. [4]

      J.P. Agrawal, High Energy Materials: Propellants, Explosives and Pyrotechnics, John Wiley & Sons, Hoboken, United States, 2010. 

    5. [5]

      H. Hahn, W. Hintze, H. Treumann, Propellants Explos. Pyrotech. 5 (2010) 129-134.

    6. [6]

      E. Salzano, A. Basco, Propellants Explos. Pyrotech. 37 (2012) 724-731.  doi: 10.1002/prep.201100050

    7. [7]

      T.W. Myers, J.A. Bjorgaard, K.E. Brown, et al., J. Am. Chem. Soc. 138 (2016) 4685-4692.  doi: 10.1021/jacs.6b02155

    8. [8]

      Y.T. Gao, L.M. Zhao, F.Q. Pang, et al., Chin. Chem. Lett. 27 (2016) 433-436.  doi: 10.1016/j.cclet.2015.12.008

    9. [9]

      M.S. Klenov, A.A. Guskov, O.V. Anikin, et al., Angew. Chem. Int. Ed. 55 (2016) 11472-11475.  doi: 10.1002/anie.201605611

    10. [10]

      G. Zhao, C.L. He, P. Yin, et al., J. Am. Chem. Soc. 140 (2018) 3560-3563.  doi: 10.1021/jacs.8b01260

    11. [11]

      B.S. Wang, X.J. Qi, W.Q. Zhang, et al., J. Mater. Chem. A 5 (2017) 20867-20873.  doi: 10.1039/C7TA05905A

    12. [12]

      Y. Wang, Y.J. Liu, S.W. Song, et al., Nat. Commun. 9 (2018) 1-11.  doi: 10.1038/s41467-017-02088-w

    13. [13]

      D.E. Chavez, D.A. Parrish, L. Mitchell, G.H. Imler, Angew. Chem. Int. Ed. 56 (2017) 3575-3578.  doi: 10.1002/anie.201612496

    14. [14]

      J. Zhou, L. Ding, F.Q. Zhao, B.Z. Wang, J.L. Zhang, Chin. Chem. Lett. 31 (2020) 554-558.  doi: 10.1016/j.cclet.2019.05.008

    15. [15]

      R.F. Wu, T.L. Zhang, X.J. Qiao, Chin. Chem. Lett. 21 (2010) 1007-1010.  doi: 10.1016/j.cclet.2010.02.006

    16. [16]

      C. Zhang, C.G. Sun, B.C. Hu, C.M. Yu, M. Lu, Science 55 (2017) 374-376.

    17. [17]

      Y.L. Liu, G. Zhao, Y.X. Tang, et al., J. Mater. Chem. A 7 (2019) 7875-7884.  doi: 10.1039/C9TA01717H

    18. [18]

      Y.G. Xu, Q. Wang, C. Shen, et al., Nature 549 (2017) 78-81.  doi: 10.1038/nature23662

    19. [19]

      G.Z. Zhao, C.L. He, D. Kumar, et al., Chem. Eng. J. 378 (2019) 122119.

    20. [20]

      O.S. Bushuyev, P. Brown, A. Maiti, et al., J. Am. Chem. Soc. 134 (2012) 1422-1425.  doi: 10.1021/ja209640k

    21. [21]

      S.H. Li, Y. Wang, C. Qi, et al., Angew. Chem. Int. Ed. 52 (2013) 14031-14035.  doi: 10.1002/anie.201307118

    22. [22]

      S.L. Chen, Z.R. Yang, B.J. Wang, et al., Sci. China Mater. 61 (2018) 1123-1128.  doi: 10.1007/s40843-017-9219-9

    23. [23]

      D.E. Chavez, D.A. Parrish, L. Mitchell, Angew. Chem. Int. Ed. 55 (2016) 8666-8669.  doi: 10.1002/anie.201604115

    24. [24]

      Y.N. Li, B.Z. Wang, Y.J. Shu, et al., Chin. Chem. Lett. 28 (2017) 117-120.  doi: 10.1016/j.cclet.2016.06.026

    25. [25]

      K.B. Landenberger, O. Bolton, A.J. Matzger, J. Am. Chem. Soc. 134 (2012) 1422-1425.  doi: 10.1021/ja209640k

    26. [26]

      M. Göbel, K. Karaghiosoff, T.M. Klapötke, D.G. Piercey, J. Stierstorfer, J. Am. Chem. Soc. 137 (2015) 5074-5079.  doi: 10.1021/jacs.5b00661

    27. [27]

      W.Q. Zhang, J.H. Zhang, M.C. Deng, et al., Nat. Commun. 8 (2017) 1-7.  doi: 10.1038/s41467-016-0009-6

    28. [28]

      A.A. Dippold, T.M. Klapötke, J. Am. Chem. Soc. 135 (2013) 9931-9938.  doi: 10.1021/ja404164j

    29. [29]

      J.C. Bennion, N. Chowdhury, J.W. Kampf, A.J. Matzger, Angew. Chem. Int. Ed. 55 (2016) 13118-13121.  doi: 10.1002/anie.201607130

    30. [30]

      E. Koch, V. Weiser, E. Roth, Angew. Chem. Int. Ed. 51 (2012) 10038-10040.  doi: 10.1002/anie.201204808

    31. [31]

      R.W. Millar, A.W. Arber, R.M. Endsor, J. Hamid, M.E. Colclough, J. Energy Mater. 29 (2011) 88-114.  doi: 10.1080/07370652.2010.484411

    32. [32]

      J.R. Burns, C. Ramshaw, Chem. Eng. Commun. 189 (2002) 1611-1628.  doi: 10.1080/00986440214585

    33. [33]

      R.M. Doherty, D.S. Watt, Propellants Explos. Pyrotech. 33 (2008) 4-13.  doi: 10.1002/prep.200800201

    34. [34]

      C. Gao, L. Yang, Y.Y. Zeng, et al., J. Phys. Chem. C 121 (2017) 17586-17594.  doi: 10.1021/acs.jpcc.7b04285

    35. [35]

      D.I.A. Millar, I.D.H. Oswald, C. Barry, et al., Chem. Commun. 46 (2010) 5662-5664.  doi: 10.1039/c0cc00368a

    36. [36]

      K.B. Landenberger, A.J. Matzger, Cryst. Growth Des. 12 (2012) 3603-3609.  doi: 10.1021/cg3004245

    37. [37]

      Y. Long, J. Chen, J. Phys. Chem. A 119 (2015) 4073-4082.  doi: 10.1021/jp509144v

    38. [38]

      D.X. Gao, J. Huang, X.H. Lin, et al., RSC Adv. 9 (2019) 5825-5833.  doi: 10.1039/C8RA10638J

    39. [39]

      T. Fei, P.H. Lv, Y.J. Liu, et al., Cryst. Growth Des. 19 (2019) 2779-2784.  doi: 10.1021/acs.cgd.8b01923

    40. [40]

      T. Sun, J.J. Xiao, Q. Liu, F. Zhao, H.M. Xiao, J. Mater. Chem. A 2 (2014) 13898-13904.  doi: 10.1039/C4TA01150C

    41. [41]

      J.C. Bennion, N. Chowdhury, J.W. Kampf, A.J. Matzger, Angew. Chem. Int. Ed. 55 (2016) 13118-13121.  doi: 10.1002/anie.201607130

    42. [42]

      J.J. Xu, S.S. Zheng, S.L. Huang, et al., Chem. Commun. 55 (2019) 909-912.  doi: 10.1039/C8CC07347C

    43. [43]

      T. Gołofit, P. Maksimowski, P. Szwarc, T. Cegłowski, J. Jefimczyk, Org. Process Res. Dev. 21 (2017) 987-991.  doi: 10.1021/acs.oprd.7b00101

    44. [44]

      M.X. Zhang, P.E. Eaton, R. Gilardi, Angew. Chem. Int. Ed. 39 (2000) 401-404.  doi: 10.1002/(SICI)1521-3773(20000117)39:2<401::AID-ANIE401>3.0.CO;2-P

    45. [45]

      J. Zhang, T.J. Hou, L. Zhang, J. Luo, Org. Lett. 20 (2018) 7172-7176.  doi: 10.1021/acs.orglett.8b03107

    46. [46]

      T.M. Klapötke, B. Krumm, F.X. Steemann, K.D. Umland, Z. Anorg. Allg. Chem. 636 (2010) 13-14.

    47. [47]

      A.K. Hussein, A. Elbeih, M. Jungova, S. Zeman, Propellants Explos. Pyrotech.43 (2018) 472-478.  doi: 10.1002/prep.201700194

    48. [48]

      M. Göbel, T.M. Klapötke, Adv. Funct. Mater. 19 (2009) 347-365.  doi: 10.1002/adfm.200801389

    49. [49]

      I.L. Dalinger, A.V. Kormanov, K.Yu. Suponitsky, N.V. Muravyev, A.B. Sheremetev, Chem. Asian J. 13 (2018) 1165-1172.  doi: 10.1002/asia.201800214

    50. [50]

      D. Kumar, G.H. Imler, D.A. Parrish, J.M. Shreeve, J. Mater. Chem. A 5 (2017) 10437-10441.  doi: 10.1039/C7TA02585H

    51. [51]

      W. Fu, B.J. Zhao, M. Zhang, et al., J. Mater. Chem. A 5 (2017) 5044-5054.  doi: 10.1039/C6TA08376E

    52. [52]

      Y.Y. Zhang, Y.N. Li, J.J. Hu, et al., Dalton Trans. 48 (2019) 1524-1529.  doi: 10.1039/C8DT04712J

    53. [53]

      P. Yin, Q.H. Zhang, J.H. Zhang, D.A. Parrish, J.M. Shreeve, J. Mater. Chem. A 1 (2013) 7500-7510.  doi: 10.1039/c3ta11356f

    54. [54]

      P. He, J.G. Zhang, X. Yin, et al., Chem. -Eur. J. 22 (2016) 7670-7685.  doi: 10.1002/chem.201600257

    55. [55]

      Y.G. Xu, C. Shen, Q.H. Lin, et al., J. Mater. Chem. A 4 (2016) 17791-17800.  doi: 10.1039/C6TA08831G

    56. [56]

      T.M. Klapötke, D.G. Piercey, Inorg. Chem. 50 (2011) 2732-2734.  doi: 10.1021/ic200071q

    57. [57]

      H.X. Gao, J.M. Shreeve, Chem. Rev. 111 (2011) 7377-7436.  doi: 10.1021/cr200039c

    58. [58]

      Z.J. Yu, E.R. Bernstein, J. Phys. Chem. A 117 (2013) 10889-10902.

    59. [59]

      R. Haiges, K.O. Christe, Inorg. Chem. 52 (2013) 7249-7260.  doi: 10.1021/ic400919n

    60. [60]

      N.V. Palysaeva, A.G. Gladyshkin, I.A. Vatsadze, et al., Org. Chem. Front. 6 (2019) 249-255.  doi: 10.1039/C8QO01173G

    61. [61]

      C.B. Jones, R. Haiges, T. Schroer, K.O. Christe, Angew. Chem. Int. Ed. 45 (2006) 4981-4984.  doi: 10.1002/anie.200600735

    62. [62]

      P. Yin, Q.H. Zhang, J.M. Shreeve, Acc. Chem. Res. 49 (2016) 4-16.  doi: 10.1021/acs.accounts.5b00477

    63. [63]

      D. Fischer, N. Fischer, T.M. Klapötke, D.G. Piercey, J. Stierstorfer, J. Mater. Chem. 22 (2012) 20418-20422.  doi: 10.1039/c2jm33646d

    64. [64]

      T.M. Klapötke, C.M. Sabaté, Chem. Mater. 20 (2008) 3629-3637.  doi: 10.1021/cm703657k

    65. [65]

      F.G. Li, Y.G. Bi, W.Y. Zhao, et al., Inorg. Chem. 54 (2015) 2050-2057.  doi: 10.1021/ic503021c

    66. [66]

      T.G. Witkowski, E. Sebastiao, B. Gabidullin, et al., ACS Appl. Energy Mater. 1 (2018) 589-593.  doi: 10.1021/acsaem.7b00138

    67. [67]

      E.F.C. Byrd, B.M. Rice, J. Phys. Chem. A 110 (2006) 1005-1013.  doi: 10.1021/jp0536192

    68. [68]

      O.V. Larionov, Heterocyclic N-Oxides, Springer International Publishing, 2017. 

    69. [69]

      R.A. Olofson, J.S. Michelman, J. Am. Chem. Soc. 869 (1964) 1863-1865.

    70. [70]

      T. Pasinszki, B. Havasi, B. Hajgató, N.P.C. Westwood, J. Phys. Chem. A 113 (2009) 170-176.

    71. [71]

      A.K. Zelenin, M.L. Trudell, R.D. Gilardi, J. Heterocycl. Chem. 35 (1998) 151-155.  doi: 10.1002/jhet.5570350128

    72. [72]

      D. D. Fischer, T.M. Klapötke, J. Stierstorfer, Eur. J. Inorg. Chem. (2014) 5808-5811.

    73. [73]

      D. Fischer, T.M. Klapötke, M. Reymann, J. Stierstorfer, Chem. -Eur. J. 20 (2014) 6401-6411.  doi: 10.1002/chem.201400362

    74. [74]

      M.A. Epishina, A.S. Kulikov, N.N. Makhova, Russ. Chem. Bull. 57 (2008) 644-651.  doi: 10.1007/s11172-008-0101-0

    75. [75]

      A.B. Sheremetev, E.V. Mantseva, Mendeleev Commun. 6 (1996) 246-247.  doi: 10.1070/MC1996v006n06ABEH000745

    76. [76]

      N.A. Troitskaya-Markova, O.G. Vlasova, T.I. Godovikova, S.G. Zlotin, O.A. Rakitin, Mendeleev Commun. 27 (2017) 448-450.  doi: 10.1016/j.mencom.2017.09.005

    77. [77]

      L.L. Fershtat, A.A. Larin, M.A. Epishina, et al., Tetrahedron Lett. 57 (2016) 4268-4272.  doi: 10.1016/j.tetlet.2016.08.011

    78. [78]

      Y.X. Tang, C.L. He, L.A. Mitchell, D.A. Parrish, J.M. Shreeve, Chem. -Eur. J. 22 (2016) 11846-11853.  doi: 10.1002/chem.201602171

    79. [79]

      C.H. Xu, C.W. An, Y.N. He, et al., Propellants Explos. Pyrotech. 43 (2018) 754-758.  doi: 10.1002/prep.201800075

    80. [80]

      X. Li, B.L. Wang, Q.H. Lin, L.P. Chen, J. Energ. Mater. 34 (2016) 409-415.  doi: 10.1080/07370652.2015.1112447

    81. [81]

      C. An, X. Wen, J. Wang, B. Wu, Cent. Eur. J. Energy Mater. 13 (2016) 397-410.  doi: 10.22211/cejem/64992

    82. [82]

      V.P. Sinditskii, A.V. Burzhava, A.B. Sheremetev, N.S. Aleksandrova, Propellants Explos. Pyrotech. 37 (2012) 575-580.  doi: 10.1002/prep.201100095

    83. [83]

      R. Tsyshevsky, P. Pagoria, M.X. Zhang, et al., J. Phys. Chem. C 119 (2015) 3509-3521.  doi: 10.1021/jp5118008

    84. [84]

      Y. Zhang, C. Zhou, B.Z. Wang, et al., Propellants Explos. Pyrotech. 39 (2014) 809-814.  doi: 10.1002/prep.201400057

    85. [85]

      R. Duddu, J. Hoare, P. Sanchez, R. Damavarapu, D. Parrish, J. Heterocyclic Chem. 54 (2017) 3087-3092.  doi: 10.1002/jhet.2920

    86. [86]

      A.B. Sheremetev, E.A. Ivanova, N.P. Spiridonova, et al., J. Heterocyclic Chem. 42 (2005) 1237-1242.  doi: 10.1002/jhet.5570420634

    87. [87]

      H.F. Huang, Y.M. Shi, Y. Yu, J. Yang, Eur. J. Org. Chem. (2018) 113-119.

    88. [88]

      O.A. Luk'yanov, G.V. Pokhvisneva, T.V. Ternikova, N.I. Shlykova, M.E. Shagaeva, Russ. Chem. Bull. 60 (2011) 1703-1711.  doi: 10.1007/s11172-011-0254-0

    89. [89]

      O.A. Luk'yanov, Y.B. Salamonov, Y.T. Struchkov, Y.N. Burtsev, S.K. Viadimir, Mendeleev Commun. 2 (1992) 52-53.  doi: 10.1070/MC1992v002n02ABEH000127

    90. [90]

      O.A. Luk'yanov, G.V. Pokhvisneva, T.V. Ternikova, Russ. Chem. Bull. 61 (2012) 1783-1786.  doi: 10.1007/s11172-012-0245-9

    91. [91]

      O.A. Luk'yanov, G.V. Pokhvisneva, T.V. Ternikova, N.I. Shlykova, Russ. Chem. Bull. 61 (2012) 360-365.  doi: 10.1007/s11172-012-0050-5

    92. [92]

      O.A. Luk'yanov, G.V. Pokhvisneva, T.V. Ternikova, Russ. Chem. Bull. 64 (2015) 137-141.  doi: 10.1007/s11172-015-0832-7

    93. [93]

      Z. Xu, H.W. Yang, G.B. Cheng, New J. Chem. 40 (2016) 9936-9944.  doi: 10.1039/C6NJ02198K

    94. [94]

      A.B. Sheremetev, N.S. Aleksandrova, N.V. Palysaeva, et al., Chem. Eur. J. 19 (2013) 12446-12457.  doi: 10.1002/chem.201302126

    95. [95]

      M. Göbel, T.M. Klapötke, Adv. Funct. Mater. 19 (2009) 347-365.  doi: 10.1002/adfm.200801389

    96. [96]

      Q. Yu, H.W. Yang, X.H. Ju, C.X. Lu, G.B. Cheng, ChemistrySelect 2 (2017) 688-696.  doi: 10.1002/slct.201601656

    97. [97]

      I. Gospodinov, T. Hermann, T.M. Klapötke, J. Stierstorfer, Propellants Explos. Pyrotech. 43 (2018) 355-363.  doi: 10.1002/prep.201700289

    98. [98]

      T.K. Kim, J.H. Choe, B.W. Lee, K.H. Chung, Bull. Korean Chem. Soc. 33 (2012) 2765-2768.  doi: 10.5012/bkcs.2012.33.8.2765

    99. [99]

      A.I. Stepanov, V.S. Sannikov, D.V. Dashko, et al., Russ. Chem. Bull. Int. Ed. 65 (2016) 2063-2067.  doi: 10.1007/s11172-016-1553-2

    100. [100]

      D.E. Chavez, Energetic heterocyclic N-oxides, in: B. Maes, J. Cossy, S. Polanc (Eds.), Heterocyclic N-Oxides. Topics in Heterocyclic Chemistry, vol. 53, Springer, 2017. 

    101. [101]

      Y.L. Liu, C.L. He, Y.X. Tang, et al., Dalton Trans. 47 (2018) 16558-16566.  doi: 10.1039/C8DT03616K

    102. [102]

      H. Wang, Q.H. Wang, W.B. Huang, Y.M. Luo, H.X. Wang, Chin. J. Energy Mater. 18 (2010) 435-438.

    103. [103]

      Y. Zhang, C. Zhou, B.Z. Wang, et al., Propellants Explos. Pyrotech. 39 (2014) 809-814.  doi: 10.1002/prep.201400057

    104. [104]

      A.A. Astrat'ev, A.I. Stepanov, V.S. Sannikov, D.V. Dashko, Russ. J. Org. Chem. 52 (2016) 1194-1202.  doi: 10.1134/S1070428016080170

    105. [105]

      Y.X. Tang, C.L. He, L.A. Mitchell, D.A. Parrish, J.M. Shreeve, Chem. -Eur. J. 22 (2016) 11846-11853.  doi: 10.1002/chem.201602171

    106. [106]

      Y.S. Zhou, B.Z. Wang, J.K. Li, et al., Acta Chim. Sin. 69 (2011) 1673-1680.

    107. [107]

      Y.S. Zhou, Z.Z. Zhang, J.K. Li, et al., Chin. J. Explos. Propellants 28 (2005) 43-46.

    108. [108]

      (a) P. Pagoria, M.X. Zhang, A. Racoveanu, et al., Molbank M824 (2014) 1-4;
      (b) R. Tsyshevsky, P. Pagoria, M.X. Zhang, et al., J. Phys. Chem. C 121 (2017) 23853-23864.

    109. [109]

      D.H. Liang, B.H. Cui, Q.H. Yi, et al., Chin. J. Expl. Propell. 38 (2015) 13-17.

    110. [110]

      I.J. Dagley, R.J. Spear, Organic Energetic Compounds, Nova Science Publishers Inc., New York, 1996, pp. 135. 

    111. [111]

      A.I. Stepanov, D.V. Dashko, A.A. Astrat'ev, Cent. Eur. J. Energy Mater. 9 (2012) 329-342.

    112. [112]

      A.I. Stepanov, A.A. Astrat'ev, D.V. Dashko, et al., Russ. Chem. Bull. 61 (2012) 1024-1040.  doi: 10.1007/s11172-012-0132-4

    113. [113]

      Y.S. Zhou, B.Z. Wang, C. Zhou, et al., Chin. J. Org. Chem. 30 (2010) 1044-1050.

    114. [114]

      L.J. Zhai, F.Q. Bi, Y.F. Luo, et al., Sci. Rep. 9 (2019) 1-8.  doi: 10.1038/s41598-018-37186-2

    115. [115]

      C.L. He, H.X. Gao, G.H. Imler, D.A. Parrish, J.M. Shreeve, J. Mater. Chem. A 6 (2018) 9391-9396.  doi: 10.1039/C8TA02274G

    116. [116]

      S. Vincent, C. Mioskowski, L. Lebeau, J. Org. Chem. 64 (1999) 991-997.  doi: 10.1021/jo980099g

    117. [117]

      J.P. Agrawal, R.B. Mehilal, P.D. Salunke, Shinde, Propellants Explos. Pyrotech. 28 (2003) 77-82.  doi: 10.1002/prep.200390012

    118. [118]

      N. Wang, B.R. Chen, Y.X. Ou, J. Energy Mater. 11 (1993) 47-50.  doi: 10.1080/07370659308018638

    119. [119]

      J.H. Boyer, G. Eck, E.D. Stevens, G. Subramanian, M.L. Trudell, J. Org. Chem. 61 (1996) 5801-5803.  doi: 10.1021/jo9608836

    120. [120]

      A.B. Sheremeteva, N.S. Aleksandrovaa, N.V. Ignat'ev, M. Schulteb, Mendeleev Commun. 22 (2012) 95-97.  doi: 10.1016/j.mencom.2012.03.015

    121. [121]

      I.Z. Kondyukov, Y.V. Karpychev, P.G. Belyaev, et al., Russ. J. Organ. Chem. 43 (2007) 635-636.  doi: 10.1134/S107042800704029X

    122. [122]

      C.C. Miao, C.B. Liu, X.J. Feng, et al., Chem. Propell. Polym. Mater. 10 (2012) 34-42.

    123. [123]

      B.Z. Wang, H. Li, Y.N. Li, P. Lian, Y.S. Zhou, X.J. Wang, Chin. J. Energy Mater. 20 (2012) 385-390.

    124. [124]

      A.B. Sheremetev, O.V. Kharitonova, T.M. Mel'nikova, T.S. Novikova, V.S. Kuz'min, L.I. Khmel'nitskii, Mendeleev Commun. 6 (1996) 141-143.  doi: 10.1070/MC1996v006n04ABEH000618

    125. [125]

      X.J. Wang, P. Lian, Z.X. Ge, et al., Acta Chim. Sinica 68 (2010) 557-563.

    126. [126]

      X.N. Qu, S. Zhang, B.Z. Wang, et al., Dalton Trans. 45 (2016) 6968-6973.  doi: 10.1039/C6DT00218H

    127. [127]

      X. Li, X.Y. Liu, S. Zhang, et al., J. Chem. Eng. Data 61 (2016) 207-212.  doi: 10.1021/acs.jced.5b00458

    128. [128]

      A.B. Sheremetev, E.V. Mantseva, D.E. Dmitriev, F.S. Sirovskii, Russ. Chem. Bull. Int. Ed. 51 (2002) 659-662.  doi: 10.1023/A:1015820318686

    129. [129]

      L.J. Zhai, B.Z. Wang, K.Z. Xu, et al., J. Energ. Mater. 34 (2016) 92-102.  doi: 10.1080/07370652.2014.1001917

    130. [130]

      A.B. Sheremetev, V.O. Kulagina, N.S. Aleksandrova, et al., Propellants Explos. Pyrotech. 23 (1998) 142-149.  doi: 10.1002/(SICI)1521-4087(199806)23:3<142::AID-PREP142>3.0.CO;2-X

    131. [131]

      R. Haiges, K.O. Christe, Dalton Trans. 44 (2015) 10166-10176.  doi: 10.1039/C5DT00291E

    132. [132]

      I.L. Dalinger, A.V. Kormanov, K.Y. Suponitsky, N.V. Muravyev, A.B. Sheremetev, Chem. Asian J. 13 (2018) 1165-1172.  doi: 10.1002/asia.201800214

    133. [133]

      G.B. Chabot, S.M. Kaplan, P. Deokar, et al., Chem. Eur. J. 23 (2017) 13087-13099.  doi: 10.1002/chem.201701690

    134. [134]

      H. Li, F.Q. Zhao, H.X. Gao, et al., Inorganica Chim. Acta 423 (2014) 256-262.

    135. [135]

      L.J. Zhai, X.Z. Fan, B.Z. Wang, et al., RSC Adv. 5 (2015) 57833-57841.  doi: 10.1039/C5RA09822J

    136. [136]

      V.V. Parakhin, O.A. Luk'yanov, Russ. Chem. Bull. 62 (2013) 2007-2011.  doi: 10.1007/s11172-013-0291-y

    137. [137]

      A.B. Sheremetev, S.E. Semenov, V.S. Kuzmin, Y.A. Strelenko, S.L. Ioffe, Chem. Eur. J. 4 (1998) 1023-1026.  doi: 10.1002/(SICI)1521-3765(19980615)4:6<1023::AID-CHEM1023>3.0.CO;2-R

    138. [138]

      I.V. Tselinskii, S.F. Mel'nikova, T.V. Romanova, et al., Russ. J. Org. Chem. 33 (1997) 1656-1665.

    139. [139]

      W. Li, J.J. Tian, X.J. Qi, et al., ChemistrySelect 3 (2018) 849-854.  doi: 10.1002/slct.201702678

    140. [140]

      I.B. Starchenkov, V.G. Andrianov, Chem. Heterocycl. Compd. 32 (1996) 618.  doi: 10.1007/BF01164797

    141. [141]

      W. Li, K.C. Wang, X.J. Qi, Y.H. Jin, Q.H. Zhang, Cryst. Growth Des. 18 (2018) 1896-1902.  doi: 10.1021/acs.cgd.8b00053

    142. [142]

      A. Gunasekaran, J.H. Boyer, Heteroatom Chem. 4 (1993) 521-524.  doi: 10.1002/hc.520040519

    143. [143]

      Y.G. Zhang, B.Z. Wang, Q. Liu, Y.S. Zhou, X.J. Wang, Chin. J. Energy Mater. 18 (2010) 383-386.

    144. [144]

      L. Türker, Def. Technol. 12 (2016) 1-15.  doi: 10.1016/j.dt.2015.11.002

    145. [145]

      Y.Y. Qu, S.P. Babailov, J. Mater. Chem. A 6 (2018) 1915-1940.  doi: 10.1039/C7TA09593G

    146. [146]

      Y.F. Chen, J. Chen, L.J. Lin, G.J. Chuang, J. Org. Chem. 82 (2017) 11620-11630.  doi: 10.1021/acs.joc.7b01883

    147. [147]

      A.A. John, Q. Lin, J. Org. Chem. 82 (2017) 9873-9876.  doi: 10.1021/acs.joc.7b01530

    148. [148]

      Y. Takeda, S. Okumura, S. Minakata, Synthesis 45 (2013) 1029-1033.  doi: 10.1055/s-0032-1318388

    149. [149]

      D. Chavez, L. Hill, M. Hiskey, S. Kinkead, J. Energy Mater. 18 (2000) 219-236.  doi: 10.1080/07370650008216121

    150. [150]

      T.S. Hermann, T.M. Klapötke, B. Krumm, J. Stierstorfer, J. Heterocyclic Chem. 55 (2018) 852-862.  doi: 10.1002/jhet.3109

    151. [151]

      J.H. Zhang, J.M. Shreeve, J. Phys. Chem. C 119 (2015) 12887-12895.

    152. [152]

      J.H. Zhang, J.M. Shreeve, J. Am. Chem. Soc. 136 (2014) 4437-4445.  doi: 10.1021/ja501176q

    153. [153]

      T.S. Novikova, T.M. Mel'nikova, O.V. Kharitonova, et al., Mendeleev Commun. 4 (1994) 138-140.  doi: 10.1070/MC1994v004n04ABEH000386

    154. [154]

      G.S. Lee, A.R. Mitchell, P.F. Pagoria, R.D. Schmidt, J. Heterocycl. Chem. 38 (2001) 1227-1230.  doi: 10.1002/jhet.5570380533

    155. [155]

      R.D. Gilardi, M.L. Trudell, A.K. Zelinin, J. Heterocycl. Chem. 35 (1998) 151-155.  doi: 10.1002/jhet.5570350128

    156. [156]

      L.V. Batog, L.S. Konstantinova, A.S. Kulikov, N.N. Makhova, Russ. Chem. Bull. Int. Ed. 62 (2013) 1388-1390.  doi: 10.1007/s11172-013-0198-7

    157. [157]

      H.Z. Li, X.Q. Zhou, J.S. Li, M. Huang, Chin. J. Org. Chem. 28 (2008) 1646-1648.

    158. [158]

      D. Fischer, T.M. Klapötke, M. Reymann, J. Stierstorfer, Chem. -Eur. J. 20 (2014) 6401-6411.  doi: 10.1002/chem.201400362

    159. [159]

      J.X. He, Y.H. Lu, Q. Lei, Y.L. Cao, Chin. J. Explos. Propellants 34 (2011) 9-12.

    160. [160]

      A.N. Binnikov, A.S. Kulikov, N.N. Makhov, I.V. Orchinnikov, T.S. Pivina, 30th-58/10.

    161. [161]

      Y.J. Liu, J.H. Zhang, K.C. Wang, et al., Angew. Chem. Int. Ed. 55 (2016) 11548-11551.  doi: 10.1002/anie.201606378

    162. [162]

      H. Li, B.Z. Wang, X.Z. Li, et al., Bull. Korean Chem. Soc. 34 (2013) 686-688.  doi: 10.5012/bkcs.2013.34.2.686

    163. [163]

      O.A. Luk'yanov, G.V. Pokhvisneva, T.V. Ternikova, Russ. Chem. Bull. Int. Ed. 61 (2012) 1783-1786.  doi: 10.1007/s11172-012-0245-9

    164. [164]

      J.R. Zhang, F.Q. Bi, P. Lian, J.L. Zhang, B.Z. Wang, Chin. J. Org. Chem. 37 (2017) 2736-2744.

    165. [165]

      O.A. Luk'yanov, G.V. Pokhvisneva, T.V. Ternikova, Russ. Chem. Bull. Int. Ed. 64 (2015) 83-86.  doi: 10.1007/s11172-015-0824-7

    166. [166]

      Q. Yu, Z.X. Wang, H.W. Yang, et al., RSC Adv. 5 (2015) 27305-27312.  doi: 10.1039/C5RA03230J

    167. [167]

      V.P. Zelenov, A.A. Lobanova, S.V. Sysolyatin, N.V. Sevodina, Russ. J. Organ. Chem. 49 (2013) 455-465.  doi: 10.1134/S107042801303024X

    168. [168]

      W. Wei, Z.X. Li, W.J. Wang, Chin. J. Energy Mater. 17 (2009) 11-13.
       

    169. [169]

      Z.X. Li, S.Q. Tang, W.J. Wang, Chin. J. Energy Mater. 15 (2007) 6-8.

    170. [170]

      V.A. Emana, M.S. Sukhanova, O.V. Lebedeva, et al., Mendeleev Commun. 7 (1997) 5-7.  doi: 10.1070/MC1997v007n01ABEH000672

    171. [171]

      Y. Qu, Q. Zeng, J. Wang, et al., Chem. Eur. J. 22 (2016) 12527-12532.  doi: 10.1002/chem.201601901

    172. [172]

      Y.X. Tang, C.L. He, L.A. Mitchell, D.A. Parrish, J.M. Shreeve, Angew. Chem. Int. Ed. 55 (2016) 5565-5567.  doi: 10.1002/anie.201601432

    173. [173]

      R.E. Narsimha, G. Vaitheeswaran, J. Phys. Chem. C 123 (2019) 10034-10050.  doi: 10.1021/acs.jpcc.9b00448

    174. [174]

      C. Shen, Y. Liu, Z.Q. Zhu, Y.G. Xu, M. Lu, Chem. Commun. 53 (2017) 7489-7492.  doi: 10.1039/C7CC03869K

    175. [175]

      Y.X. Tang, H.X. Gao, G.H. Imler, D.A. Parrish, J.M. Shreeve, RSC Adv. 6 (2016) 91477-91482.  doi: 10.1039/C6RA22007J

    176. [176]

      L.L. Fershtata, M.A. Epishinaa, A.S. Kulikova, et al., Tetrahedron 71 (2015) 6764-6775.  doi: 10.1016/j.tet.2015.07.034

    177. [177]

      Y.F. Luo, L. Ma, B.Z. Wang, et al., Chin. J. Energy Mater. 18 (2010) 538-540.

    178. [178]

      A.S. Kulikov, I.V. Ovchinnikov, S.I. Molotov, N.N. Makhova, Russ. Chem. Bull. Int. Ed. 52 (2003) 1822-1828.  doi: 10.1023/A:1026073108494

    179. [179]

      Y.A.Qiu, W.J.Kong, J.Struwe, et al., Angew. Chem.Int.Ed. 57 (2018)5828-5832.  doi: 10.1002/anie.201803342

    180. [180]

      J. Barjau, G. Schnakenburg, S.R. Waldvogel, Angew. Chem. Int. Ed. 50 (2011) 1415-1419.  doi: 10.1002/anie.201006637

    181. [181]

      K.M. Waldie, K.R. Flajslik, E. McLoughlin, C.E. Chidsey, R.M. Waymouth, J. Am. Chem. Soc. 139 (2017) 738-748.  doi: 10.1021/jacs.6b09705

    182. [182]

      A.B. Sheremetev, B.V. Lyalin, A.M. Kozeev, et al., RSC Adv. 5 (2015) 37617-37625.  doi: 10.1039/C5RA05726D

    183. [183]

      D.E. Chavez, D.A. Parrish, P. Leonard, Synlett 23 (2012) 2126-2128.  doi: 10.1055/s-0032-1316704

    184. [184]

      X.J. Wang, P. Lian, B.Z. Wang, et al., Chin. J. Energy Mater. 23 (2015) 106-112.

    185. [185]

      T.S. Pivina, D.V. Sukhachev, A.V. Evtushenko, L.I. Khmelnitskii, Propellants Explos. Pyrotech. 20 (1995) 5-10.  doi: 10.1002/prep.19950200103

    186. [186]

      A.B. Sheremetev, E.V. Mantseva, 32th International Annual Conference of ICT, Karlsruhe, 2001, pp. 103. 

    187. [187]

      Y.S. Zhou, B.Z. Wang, X.J. Wang, et al., Chin. J. Energ. Mater. 20 (2012) 137-138.

    188. [188]

      X.J. Wang, K.Z. Xu, Q. Sun, et al., Propellants Explos. Pyrotech. 40 (2015) 9-12.  doi: 10.1002/prep.201400148

    189. [189]

      L.J. Zhai, F.Q. Bi, H. Huo, et al., Front. Chem. 7 (2019) 559.  doi: 10.3389/fchem.2019.00559

    190. [190]

      A.I. Stepanov, D.V. Dashko, A.A. Astrat'ev, Cent. Eur. J. Energy Mater. 9 (2012) 329-342.

    191. [191]

      O.A. Luk'yanov, V.V. Parakhin, Russ. Chem. Bull. Int. Ed. 61 (2012) 1582-1590.  doi: 10.1007/s11172-012-0210-7

    192. [192]

      J.H. Zhang, S. Dharavath, L.A. Mitchell, D.A. Parrishd, J.M. Shreeve, J. Mater. Chem. A 4 (2016) 16961-16967.  doi: 10.1039/C6TA08055C

    193. [193]

      A.O. Finogenov, M.A. Epishina, A.S. Kulikov, et al., Russ. Chem. Bull. Int. Ed. 59 (2010) 2108-2113.  doi: 10.1007/s11172-010-0363-1

    194. [194]

      A.B. Sheremetev, V.O. Kulagina, I.L. Yudin, N.E. Kuzmina, Mendeleev Commun. 11 (2001) 112-114.  doi: 10.1070/MC2001v011n03ABEH001424

    195. [195]

      A.B. Sheremetev, V.L. Korolev, A.A. Potemkin, et al., Asian J. Org. Chem. 5 (2016) 1388-1397.  doi: 10.1002/ajoc.201600386

  • 加载中
    1. [1]

      Arash Ghorbani-Choghamarani Mina Abbasi . Poly(4-vinylpyridinium tribromide) as metal-free,green and recoverable oxidizing polymer for the chemoselective oxidation of sulfides into sulfoxides. Chinese Chemical Letters, 2011, 22(1): 114-118. doi: 10.1016/j.cclet.2010.09.011

    2. [2]

      Ge MengMei-Lin ZhengA-Qun ZhengMei WangaJuan Shi . The novel usage of thiourea nitrate in aryl nitration. Chinese Chemical Letters, 2014, 25(1): 87-89.

    3. [3]

      Peng ZHOU Xin Ping WANG Tian Xi CAI . A Durable Catalyst for Vapor Phase Nitration of Benzene with Nitric Acid. Chinese Chemical Letters, 2002, 13(10): 1013-1016.

    4. [4]

      Xiao Ming Ma Bin Dong Li Ming Lu Chun Xu Lv . Rare earth metal triflates catalyzed electrophilic nitration using N2O5. Chinese Chemical Letters, 2012, 23(1): 73-76. doi: 10.1016/j.cclet.2011.09.021

    5. [5]

      Ali Reza Pourali Fatemeh Fatemi . Selective nitration of phenols using bismuth subnitrate/charcoal in the presence of trichloroisocyanuric acid under aprotic conditions. Chinese Chemical Letters, 2010, 21(11): 1283-1286. doi: 10.1016/j.cclet.2010.05.016

    6. [6]

      Arash Shokrolahi Abbas Zali Mohammad Hossein Keshavarz . Wet carbon-based solid acid/NaNO3 as a mild and efficient reagent for nitration of aromatic compound under solvent free conditions. Chinese Chemical Letters, 2007, 18(9): 1064-1066. doi: 10.1016/j.cclet.2007.06.031

    7. [7]

      Firouzeh Nemati Hossein Kiani . Zn(NO3)2·6H2O/2,4,6-trichloro-1,3,5-triazine(TCT)a mild and selective system for nitration of phenols. Chinese Chemical Letters, 2010, 21(4): 403-406. doi: 10.1016/j.cclet.2009.11.017

    8. [8]

      Gholamabbas Chehardoli Mohammad Ali Zolfigol Seyedeh Bahareh Azimi Ebadollah Alizadeh d . Melamine-(H2SO4)3 and PVP-(H2SO4)n as solid acids:Synthesis and application in the first mono- and di-nitration of bisphenol A and other phenols. Chinese Chemical Letters, 2011, 22(7): 827-830. doi: 10.1016/j.cclet.2011.01.021

    9. [9]

      Bao Kun ZHU Hong Bin ZHANG Yu Shun ZHANG Hui Min ZHONG Jian Ping LIU . Oxidation of Hecogenin and Diosgenin Derivatives with Dimethyldioxirane. Chinese Chemical Letters, 2005, 16(2): 143-146.

    10. [10]

      Chuan Zhi XU Lin CHEN Zhen LI Wei SUN Chun Gu XIA . A Mild and Efficient Oxidation of Alcohols in Water. Chinese Chemical Letters, 2004, 15(10): 1149-1152.

    11. [11]

      Dong Po Shi Hong Bing Ji . β-Cyclodextrin promoted oxidation of aldehydes to carboxylic acids in water. Chinese Chemical Letters, 2009, 20(2): 139-142. doi: 10.1016/j.cclet.2008.10.037

    12. [12]

      Hui Ming Jin Lin Nan Zhang . High temperature oxidation of chromium with nanometric ceria sol-gel coating. Chinese Chemical Letters, 2008, 19(12): 1504-1508. doi: 10.1016/j.cclet.2008.09.038

    13. [13]

      Xiao Gang Li Jing Wang Ren He . Selective oxidation of ethylbenzene catalyzed by fluorinated metalloporphyrins with molecular oxygen. Chinese Chemical Letters, 2007, 18(9): 1053-1056. doi: 10.1016/j.cclet.2007.06.019

    14. [14]

      Jun LIU Rui ZHANG Liang GAO Tao JIANG Zhi Min LIU Jun HE Bu Xing HAN Guan Ying YANG . The Oxidation of Cyclohexene with Polymer Supported Co(II) in Supercritical Carbon Dioxide. Chinese Chemical Letters, 2002, 13(12): 1162-1163.

    15. [15]

      Nor Aqilah Mohd FadzilMohd Hasbi Ab. RahimGaanty Pragas Maniam . A brief review of para-xylene oxidation to terephthalic acid as a model of primary C-H bond activation. Chinese Journal of Catalysis, 2014, 35(10): 1641-1652. doi: 10.1016/S1872-2067(14)60193-5

    16. [16]

      Ali Reza Pourali Mehrosadat Tabaean S. Mohamad Reza Nazifi . A novel and selective oxidation of benzylic alcohols with polymer-supported periodic acid under mild aprotic conditions. Chinese Chemical Letters, 2012, 23(1): 21-24. doi: 10.1016/j.cclet.2011.07.022

    17. [17]

      Ateeq Rahman S.M.Al Zahrani Abdel Aziz Nait Ajjou . An efficient oxidation of benzylic and alicylic compounds with water-soluble copper catalysts in t-butyl hydroperoxide at room temperature. Chinese Chemical Letters, 2011, 22(6): 691-693. doi: 10.1016/j.cclet.2010.12.035

    18. [18]

      Sandeep V. Khansole Shivaji B. Patwari Archana Y. Vibhute Yeshwant B. Vibhute . Isoquinolinium bromochromate: An efficient and stable reagent for bromination of hydroxylated aromatic compounds and oxidation of alcohols. Chinese Chemical Letters, 2009, 20(3): 256-260. doi: 10.1016/j.cclet.2008.11.015

    19. [19]

      Yu Lan Niu Zheng Xu Min Li Rui Feng Li . Oxidation of glyoxal to glyoxylic acid by oxygen over V2O5/C catalyst. Chinese Chemical Letters, 2008, 19(2): 245-248. doi: 10.1016/j.cclet.2007.11.015

    20. [20]

      Arash Shokrolahi Abbas Zali Mohammad Hossein Kes . Wet carbon-based solid acid/potassium permanganate as an efficient heterogeneous reagents for oxidation of alcohols under mild conditions. Chinese Chemical Letters, 2008, 19(11): 1274-1276. doi: 10.1016/j.cclet.2008.09.020

Metrics
  • PDF Downloads(3)
  • Abstract views(49)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return