Citation: Lin Tao, Zhao Qingyang, Zhang Xumu, Dong Xiu-Qin. Facile access to chiral 4-substituted chromanes through Rh-catalyzed asymmetric hydrogenation[J]. Chinese Chemical Letters, ;2020, 31(7): 1859-1862. doi: 10.1016/j.cclet.2020.01.001 shu

Facile access to chiral 4-substituted chromanes through Rh-catalyzed asymmetric hydrogenation

    * Corresponding author at: Key Laboratory of Biomedical Polymers, Engineering Research Centre of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
    ** Corresponding author.
    E-mail addresses: zhangxm@sustc.edu.cn (X. Zhang), xiuqindong@whu.edu.cn (X.-Q. Dong).
  • Received Date: 1 November 2019
    Revised Date: 17 December 2019
    Accepted Date: 2 January 2020
    Available Online: 2 January 2020

Figures(6)

  • Rh/ZhaoPhos-catalyzed asymmetric hydrogenation of a series of (E)-2-(chroman-4-ylidene)acetates was successfully developed to prepare various chiral 4-substituted chromanes with high yields and excellent enantioselectivities (up to 99% yield, 98% ee). Moreover, the gram-scale hydrogenation could be performed well in the presence of 0.02 mol% catalyst loading (TON = 5000), the hydrogenation product was easily converted to access other important compounds, which demonstrated the synthetic utility of this asymmetric catalytic methodology.
  • 加载中
    1. [1]

      (a) G.R. Geen, J.M. Evans, A.K. Vong, Pyrans and their benzo derivatives: applications, in: A.R. Katritzky, C.W. Rees, E.F.V. Scriven (Eds.), Comprehensive Heterocyclic Chemistry Ⅱ, Vol. 5, PergamonPress, Oxford, UK, 1996, pp.469-500;
      (b) D.A. Horton, G.T. Boume, M.L. Smythe, Chem. Rev. 103 (2003) 893-930;
      (c) G.P. Ellis, Chromenes, chromanones, and chromones, in: A. Weissberger, E.C. Taylor (Eds.), The Chemistry of Heterocyclic Compounds, Vol. 31, Wiley-VCH, New York, 2007, pp. 1-1196;
      (d) K. Tatsuta, T. Tamura, T. Mase, Tetrahedron Lett. 40 (1999) 1925-1928;
      (e) Y. Kashiwada, K. Yamazaki, Y. Ikeshiro, et al., Tetrahedron 57 (2001) 1559-1563;
      (f) D.J. Maloney, J.Z. Deng, S.R. Starck, Z. Gao, S.M. Hecht, J. Am. Chem. Soc. 127 (2005) 4140-4141;
      (g) J.Z. Deng, S.R. Starck, S. Li, S.M. Hecht, J. Nat. Prod. 68 (2005) 1625-1628;
      (h) D.J. Maloney, S. Chen, S.M. Hecht, Org. Lett. 8 (2006) 1925-1927;
      (i) K.S. Choi, S.G. Kim, Tetrahedron Lett. 51 (2010) 5203-5206;
      (j) A.L. Lawrence, R.M. Adlington, E. Jack, et al., Org. Lett. 12 (2010) 1676-1679;
      (k) J.P. Lumb, J.L. Krinsky, D. Trauner, Org. Lett. 12 (2010) 5162-5365;
      (l) J.T.J. Spence, J.H. George, Org. Lett. 13 (2011) 5318-5321;
      (m) S.B. Bharate, R. Mudududdla, J.B. Bharate, et al., Org. Biomol. Chem. 10 (2012) 5143-5150;
      (n) J. Liu, X. Wang, L. Xu, et al., Tetrohedron 72 (2016) 7642-7649.

    2. [2]

      (a) R. Ukis, C. Schneider, J. Org. Chem. 84 (2019) 7175-7188;
      (b) A.B. Xia, C. Wu, T. Wang, et al., Adv. Synth. Catal. 356 (2014) 1753-1760;
      (c) Z. Wu, S.D. Laffoon, K.L. Hull, Nat. Commun. 9 (2018) 1185-1192.

    3. [3]

      (a) R. Maity, S.C. Pan, Org. Biomol. Chem. 16 (2018) 1598-1608;
      (b) Y. Lee, S.W. Seo, S.G. Kim, Adv. Synth. Catal. 353 (2011) 2671-2675;
      (c) K.S. Choi, S.G. Kim, Eur. J. Org. Chem. (2012) 1119-1122;
      (d) L. Zu, S. Zhang, H. Xie, W. Wang, Org. Lett. 11 (2009) 1627-1630.

    4. [4]

      (a) D. Enders, C. Wang, X. Yang, G. Raabe, Adv. Synth. Catal. 352 (2010) 2869-2874;
      (b) D. Enders, X. Yang, C. Wang, G. Raabe, J. Runsik, Chem. -Asian J. 6 (2011) 2255-2259;
      (c) B.C. Hong, P. Kotame, J.H. Liao, Org. Biomol. Chem. 9 (2011) 382-386;
      (d) D.B. Ramachary, M.S. Prasad, R. Madhavachary, Org. Biomol. Chem. 9 (2011) 2715-2721;
      (e) S. Jakkampudi, R. Parella, J.C.G. Zhao, Org. Biomol. Chem. 17 (2019) 151-155;
      (f) D.B. Ramachary, R. Sakthidevi, K.S. Shruthi, Chem. -Eur. J. 18 (2012) 8008-8012;
      (g) D.B. Ramachary, P.S. Reddy, M.S. Prasad, Eur. J. Org. Chem. (2014) 3076-3081;
      (h) D. Lu, Y. Li, Y. Gong, J. Org. Chem. 75 (2010) 6900-6907;
      (i) J. Yang, G. Qiu, J. Jiang, et al., Adv. Synth. Catal. 359 (2017) 2184-2190.

    5. [5]

      (a) Z. Wang, J. Sun, Org. Lett. 19 (2017) 2334-2337;
      (b) C.C. Hsiao, S. Raja, H.H. Liao, I. Atodiresei, M. Rueping, Angew. Chem. Int. Ed. 54 (2015) 5762-5765.

    6. [6]

      (a) A. Song, X. Zhang, X. Song, et al., Angew. Chem. Int. Ed. 53 (2014) 4940-4944;
      (b) M. Spanka, C. Schneider, Org. Lett. 20 (2018) 4769-4772.

    7. [7]

      G. Blay, M.C. Muñoz, J.R. Pedro, A.S. Marco, Adv. Synth. Catal. 355(2013) 1071-1076.  doi: 10.1002/adsc.201201120

    8. [8]

      D.A. Glazier, J.M. Schroeder, J. Liu, W. Tang, Adv. Synth. Catal. 360(2018) 4646-4649.  doi: 10.1002/adsc.201800994

    9. [9]

      W. Yang, Y. Liu, S. Zhang, Q. Cai, Angew. Chem. Int. Ed. 54(2015) 8805-8808.  doi: 10.1002/anie.201503882

    10. [10]

      R.M. Neyyappadath, D.B. Cordes, A.M.Z. Slawin, A.D. Smith, Chem. Commun. 53(2017) 2555-2558.  doi: 10.1039/C6CC10178J

    11. [11]

      Q.G. Wang, S.F. Zhu, L.W. Ye, et al., Adv. Synth. Catal. 352(2010) 1914-1919.  doi: 10.1002/adsc.201000129

    12. [12]

      K. Fukamizu, Y. Miyake, Y. Nishibayashi, J. Am. Chem. Soc. 130(2008) 10498-10499.  doi: 10.1021/ja8038745

    13. [13]

      (a) Y. Zhou, J.S. Bandar, R.Y. Liu, S.L. Buchwald, J. Am. Chem. Soc. 140 (2018) 606-609;
      (b) V. Hornillos, A.W. Zijl, B.L. Feringa, Chem. Commun. 48 (2012) 3712-3714;
      (c) R.C. Carmona, O.D. Köster, C.R.D. Correia, Angew. Chem. Int. Ed. 57 (2018) 12067-12070;
      (d) M. Wang, J. Chen, Z. Chen, C. Zhong, P. Lu, Angew. Chem. Int. Ed. 57 (2018) 2707-2711.

    14. [14]

      (a) W.S. Knowles, Acc. Chem. Res. 16 (1983) 106-112;
      (b) R. Noyori, H. Takaya, Acc. Chem. Res. 23 (1990) 345-350;
      (c) R. Noyori, T. Ohkuma, Angew. Chem. Int. Ed. 40 (2001) 40-73;
      (d) W. Tang, X. Zhang, Chem. Rev. 103 (2003) 3029-3070;
      (e) H.U. Blaser, C. Malan, B. Pugin, et al., Adv. Synth. Catal. 345 (2003) 103-151;
      (f) X. Cui, K. Burgess, Chem. Rev. 105 (2005) 3272-3296;
      (g) A.J. Minnaard, B.L. Feringa, L. Lefort, J.G. De Vries, Acc. Chem. Res. 40 (2007) 1267-1277;
      (h) W. Zhang, Y. Chi, X. Zhang, Acc. Chem. Res. 40 (2007) 1278-1290;
      (i) N.B. Johnson, I.C. Lennon, P.H. Moran, J.A. Ramsden, Acc. Chem. Res. 40 (2007) 1291-1299;
      (j) Y.G. Zhou, Acc. Chem. Res. 40 (2007) 1357-1366;
      (k) S.J. Roseblade, A. Pfaltz, Acc. Chem. Res. 40 (2007) 1402-1411;
      (l) N. Fleury-Bregeot, V. de la Fuente, S. Castillón, C. Claver, ChemCatChem 2 (2010) 1346-1371;
      (m) J.H. Xie, S.F. Zhu, Q.L. Zhou, Chem. Rev. 111 (2011) 1713-1760;
      (n) D.S. Wang, Q.A. Chen, S.M. Lu, Y.G. Zhou, Chem. Rev. 112 (2012) 2557-2590;
      (o) J.H. Xie, S.F. Zhu, Q.L. Zhou, Chem. Soc. Rev. 41 (2012) 4126-4139;
      (p) Q.A. Chen, Z.S. Ye, Y. Duan, Y.G. Zhou, Chem. Soc. Rev. 42 (2013) 497-511;
      (q) J.J. Verendel, O. Pamies, M. Dieguez, P.G. Andersson, Chem. Rev. 114 (2014) 2130-2169;
      (r) Z. Zhang, N.A. Butt, W. Zhang, Chem. Rev. 116 (2016) 14769-14827.

    15. [15]

      (a) J. Xia, Y. Nie, G. Yang, Y. Liu, W. Zhang, Org. Lett. 19 (2017) 4884-4887;
      (b) B. Qu, L.P. Samankumara, S. Ma, et al., Angew. Chem. Int. Ed. 53 (2014) 14428-14432.

    16. [16]

      (a) S. Guo, J. (Steve) Zhou, Org. Lett. 18 (2016) 5344-5347;
      (b) S. Guo, P. Yang, J. (Steve) Zhou, Chem. Commun. 51 (2015) 12115-12117.

    17. [17]

      (a) Q. Zhao, S. Li, K. Huang, R. Wang, X. Zhang, Org. Lett. 15 (2013) 4014-4017;
      (b) P. Li, M. Zhou, Q. Zhao, et al., Org. Lett. 18 (2016) 40-43;
      (c) Q. Zhao, J. Wen, R. Tan, et al., Angew. Chem. Int. Ed. 53 (2014) 8467-8470;
      (d) J. Wen, R. Tan, S. Liu, Q. Zhao, X. Zhang, Chem. Sci. 7 (2016) 3047-3051;
      (e) Z. Han, P. Li, Z. Zhang, et al., ACS Catal. 6 (2016) 6214-6218;
      (f) T. Zhang, J. Jiang, L. Yao, H. Geng, X. Zhang, Chem. Commun. 53 (2017) 9258-9261;
      (g) G. Liu, Z. Han, X.Q. Dong, X. Zhang, Org. Lett. 20 (2018) 5636-5639.

    18. [18]

      (a) B.D. Gallagher, B.R. Taft, B.H. Lipshutz, Org. Lett. 11 (2009) 5374-5377;
      (b) F. Song, S. Lu, J. Gunnet, et al., J. Med. Chem. 50 (2007) 2807-2817.

  • 加载中
    1. [1]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    2. [2]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    3. [3]

      Cong GaoZijian ZhuSiwei LiZheng XiQingqing SunJie HanRong Guo . Chiral supramolecular catalysts of helical nanoribbon: More twist, higher enantioselectivity. Chinese Chemical Letters, 2025, 36(3): 109968-. doi: 10.1016/j.cclet.2024.109968

    4. [4]

      Juanjuan WangFang WangBin QinYue WuHuan YangXiaolong LiLanfang WangXiufang QinXiaohong Xu . Controlled synthesis and excellent magnetism of ferrimagnetic NiFe2Se4 nanostructures. Chinese Chemical Letters, 2024, 35(11): 109449-. doi: 10.1016/j.cclet.2023.109449

    5. [5]

      Zhixiang LiZhirong YangChang YaoBin WuGang QianXuezhi DuanXinggui ZhouJing Zhang . Efficient continuous synthesis of 2-hydroxycarbazole and 4-hydroxycarbazole in a millimeter scale photoreactor. Chinese Chemical Letters, 2024, 35(4): 108893-. doi: 10.1016/j.cclet.2023.108893

    6. [6]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    7. [7]

      Xiang HuangDongzhen XuYang LiuXia HuangYangfan WuDongmei FangBing XiaWei JiaoJian LiaoMin Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665

    8. [8]

      Guang XuCuiju ZhuXiang LiKexin ZhuHao Xu . Copper-catalyzed asymmetric [4+1] annulation of yne–allylic esters with pyrazolones. Chinese Chemical Letters, 2025, 36(4): 110114-. doi: 10.1016/j.cclet.2024.110114

    9. [9]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    10. [10]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    11. [11]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    12. [12]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    13. [13]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    14. [14]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    15. [15]

      Teng-Yu HuangJunliang SunDe-Xian WangQi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758

    16. [16]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    17. [17]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    18. [18]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    19. [19]

      Huashan HuangJingze ChenLuyun ZhangHong YanSiqi LiFen-Er Chen . Oscillatory flow reactor facilitates fast photochemical Wolff rearrangement toward synthesis of α-substituted amides in flow. Chinese Chemical Letters, 2025, 36(2): 109992-. doi: 10.1016/j.cclet.2024.109992

    20. [20]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

Metrics
  • PDF Downloads(4)
  • Abstract views(870)
  • HTML views(135)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return