Citation: Luo Dongping, Min Lin, Zheng Weiping, Shan Lidong, Wang Xinyan, Hu Yuefei. Introduction of N, N'-disulfonylhydrazines as new sulfonylating reagents for highly efficient synthesis of (E)-β-iodovinyl arenesulfones under mild conditions[J]. Chinese Chemical Letters, ;2020, 31(7): 1877-1880. doi: 10.1016/j.cclet.2019.12.040 shu

Introduction of N, N'-disulfonylhydrazines as new sulfonylating reagents for highly efficient synthesis of (E)-β-iodovinyl arenesulfones under mild conditions

Figures(9)

  • N, N'-Disulfonylhydrazines have been proven to be the most reactive precursors of the sulfonyl radicals among all types of sulfonyl substituted hydrazines as early as half a century ago. However, the sulfonyl radicals generated from these compounds have not been used in organic synthesis except the simple selfdimerization synthesis of disulfones controlled by the “solvent-cage-effects”. In this article, N, N'-disulfonylhydrazines were introduced as new sulfonylating reagents and their combinations with NIS were disclosed as new iodosulfonylating reagents of alkynes. Finally, a highly efficient method for the synthesis of (E)-β-iodovinyl arenesulfones was developed by mixing an alkyne, a N, N'-disulfonylhydrazine and NIS in aqueous THF at room temperature for 5 min.
  • 加载中
    1. [1]

      (a) T.G. Back, K.N. Clary, D. Gao, Chem. Rev. 110 (2010) 4498-4553;
      (b) M. Nielsen, C.B. Jacobsen, N. Holub, et al., Angew. Chem. Int. Ed. 49 (2010) 2668-2679;
      (c) Q. Zhu, Y. Lu, Aust. J. Chem. 62 (2009) 951-955;
      (d) T. Pathak, Tetrahedron 64 (2008) 3605-3628;
      (e) P.L. Fuchs, T.F. Braish, Chem. Rev. 86 (1986) 903-917.

    2. [2]

      (a) Y. Fang, Z. Luo, X. Xu, RSC Adv. 6 (2016) 59661-59676;
      (b) N.W. Liu, S. Liang, G. Manolikakes, Synthesis 48 (2016) 1939-1973;
      (c) D.C. Meadows, J. Gervay-Hague, Med. Res. Rev. 26 (2006) 793-814;
      (d) N.S. Simpkins, Tetrahedron 46 (1990) 6951-6984.

    3. [3]

      (a) J. Jia, Y.A. Ho, R.F. Bulow, et al., Chem. -Eur. J. 24 (2018) 14054-14058;
      (b) M.A. Shameem, K. Esfandiarfard, E. Öberg, et al., Chem. -Eur. J. 22 (2016) 10614-10619;
      (c) J.R. Bull, N.S. Desmond-Smith, S.J. Heggie, et al., Synlett (1998) 900-902;
      (d) N. Iwata, T. Morioka, T. Kobayashi, et al., Bull. Inomata, Chem. Soc. Jpn. 65 (1992) 1379-1388;
      (e) W.E. Truce, G.C. Wolf, J. Org. Chem. 36 (1971) 1727-1732.

    4. [4]

      (a) Y. Liang, S.H. Suzol, Z. Wen, et al., Org. Lett. 18 (2016) 1418-1421;
      (b) T. Zoller, D. Uguen, Eur. J. Org. Chem. (1999) 1545-1550;
      (c) A. Padwa, D.J. Austin, M. Ishida, et al., J. Org. Chem. 57 (1992) 1161-1169;
      (d) W.E. Truce, A.W. Borel, P.J. Marek, J. Org. Chem. 41 (1976) 401-402.

    5. [5]

      (a) J. Zhang, Z. Liang, J. Wang, et al., ACS Omega 3 (2018) 18002-18015;
      (b) Y. Sun, A. Abdukader, D. Lu, et al., Green Chem. 19 (2017) 1255-1258;
      (c) Y. Gao, W. Wu, Y. Huang, et al., Org. Chem. Front. 1 (2014) 361-364.

    6. [6]

      (a) X.X. Gu, M.H. Xie, X.Y. Zhao, et al., Chin. J. Chem. 26 (2008) 1625-1629;
      (b) W. Wei, J. Wen, D. Yang, et al., RSC Adv. 5 (2015) 4416-4419;
      (c) J.P. Wan, D. Hu, F. Bai, et al., RSC Adv. 6 (2016) 73132-73135.

    7. [7]

      (a) N. Taniguchi, Tetrahedron 74 (2018) 1454-1460;
      (b) R. Kumar, V. Dwivedi, M.S. Reddy, Adv. Synth. Catal. 359 (2017) 2847-2856;
      (c) N. Taniguchi, Tetrahedron 70 (2014) 1984-1990;
      (d) T. Sawangphon, P. Katrun, K. Chaisiwamongkhol, et al., Synth. Commun. 43 (2013) 1692-1707;
      (e) P. Katrun, S. Chiampanichayakul, K. Korworapan, et al., Eur. J. Org. Chem. (2010) 5633-5641;
      (f) V. Nair, A. Augustine, T.D. Suja, Synthesis (2002) 2259-2265;
      (g) K.M. Short, C.B. Ziegler Jr., Tetrahedron Lett. 36 (1995) 355-356.

    8. [8]

      Y. Tan, S. Jia, F. Hu, et al., J. Am. Chem. Soc. 140 (2018) 16893-16898.  doi: 10.1021/jacs.8b09893

    9. [9]

      L. Kadari, R.K. Palakodety, L.P. Yallapragada, Org. Lett. 19 (2017) 2580-2583.  doi: 10.1021/acs.orglett.7b00896

    10. [10]

      Y. Xiang, Y. Kuang, J. Wu, Chem. Eur. J. 23 (2017) 6996-6999.  doi: 10.1002/chem.201701465

    11. [11]

      (a) Y. Ma, K. Wang, D. Zhang, et al., Adv. Synth. Catal. 361 (2019) 597-602;
      (b) H. Cui, C. He, D. Yang, et al., Synlett 29 (2018) 830-834;
      (c) Y. Hou, L. Zhu, H. Hu, et al., New J. Chem. 42 (2018) 8752-8755;
      (d) C. Tong, B. Gan, Y. Yan, et al., Synth. Commun. 47 (2017) 1927-1933;
      (e) L. Yang, D. Hu, L. Wei, et al., Phosphorus Sulfur Silicon Relat. Elem. 192 (2017) 1301-1304;
      (f) G.C. Senadi, B.C. Guo, W.P. Hu, et al., Chem. Commun. (Camb.) 52 (2016) 11410-11413;
      (g) N.J. Victor, J. Gana, K.M. Muraleedharan, Chem. -Eur. J. 21 (2015) 14742-14747;
      (h) X. Li, X. Xu, X. Shi, Tetrahedron Lett. 54 (2013) 3071-3074.

    12. [12]

      Y. Kohara, M. Kobayashi, H. Minato, Bull. Chem. Soc. Jpn. 43 (1970) 2933-2937.  doi: 10.1246/bcsj.43.2933

    13. [13]

      A.T. Maioli, J.P. Anselme, Tetrahedron Lett. 36 (1995) 1221.

    14. [14]

      (a) D. Guo, J. Liu, L. Wang, Proc. SPIE 7972, Advances in Resist Materials and Processing Technology XXVIII 79722D, San Jose, California, USA, 2011;
      (b) E.A. Bartmann, Synthesis (1993) 490-496.

    15. [15]

      (a) H.H.C. Lakmal, J.X. Xu, X. Xu, et al., J. Org. Chem. 83 (2018) 9497-9503;
      (b) X. Wu, B. Liu, Y. Zhang, et al., Angew. Chem. Int. Ed 55 (2016) 12280-12284;
      (c) U. Ragnarsson, L. Grehn, Tetrahedron Lett. 53 (2012) 1045-1047;
      (d) M. Fernández, E. Reyes, J.L. Vicario, et al., Adv. Synth. Catal. 354 (2012) 371-376;
      (e) T. Toma, J. Shimokawa, T. Fukuyama, Org. Lett. 9 (2007) 3195-3197.

    16. [16]

      C.R.LeBlond, K.Rossen, F.P.Gortsema, et al., TetrahedronLett.42 (2001)8603-8606.  doi: 10.1016/S0040-4039(01)01863-9

    17. [17]

      (a) E. Dubost, V. Babin, F. Benoist, et al., Org. Lett. 20 (2018) 6302-6305;
      (b) Y.D. Vankar, G. Kumaravel, Tetrahedron Lett. 25 (1984) 233-236.

  • 加载中
    1. [1]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    2. [2]

      Chong-Yang ShiJian-Xing GongZhen LiChao ShuLong-Wu YeQing SunBo ZhouXin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895

    3. [3]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    4. [4]

      Cailing WuShaojie WuQifei HuangKai SunXianqiang HuangJianji WangBing Yu . Potassium-modified carbon nitride photocatalyzed-aminoacylation of N-sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110250-. doi: 10.1016/j.cclet.2024.110250

    5. [5]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    6. [6]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    7. [7]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    8. [8]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    9. [9]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    10. [10]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    11. [11]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    12. [12]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    13. [13]

      Lijun MaoShuo LiXin ZhangZhan-Ting LiDa Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363

    14. [14]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    15. [15]

      Yan GuoHongtao BianLe YuJiani MaYu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971

    16. [16]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    17. [17]

      Yun-Xin HuangLin-Qian YuKe-Yu ChenHao WangShou-Yan ZhaoBao-Cheng HuangRen-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437

    18. [18]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    19. [19]

      Ke ZhangYajing WeiLinhua XieSha KangFei LiChuanyi Wang . Amorphous titanium carbide on N-defective g-C3N5 for high-efficiency photocatalytic NO removal. Chinese Chemical Letters, 2025, 36(3): 110086-. doi: 10.1016/j.cclet.2024.110086

    20. [20]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

Metrics
  • PDF Downloads(8)
  • Abstract views(892)
  • HTML views(95)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return