Citation: Zhu Yating, Ling Jinfeng, Li Lei, Guan Xiaohong. The effectiveness of bisulfite-activated permanganate technology to enhance the coagulation efficiency of Microcystis aeruginosa[J]. Chinese Chemical Letters, ;2020, 31(6): 1545-1549. doi: 10.1016/j.cclet.2019.12.036 shu

The effectiveness of bisulfite-activated permanganate technology to enhance the coagulation efficiency of Microcystis aeruginosa

    * Corresponding author at:State Key Laboratory of Pollution Control and Resources Reuse College of Environmental Science and Engineering Tongji University Shanghai 200092 China.
    E-mail addresses:guanxh@tongji.edu.cn (X. Guan).
  • Received Date: 8 November 2019
    Revised Date: 15 December 2019
    Accepted Date: 15 December 2019
    Available Online: 1 June 2020

Figures(4)

  • The effects of bisulfite-activated permanganate technology (PM/BS) as a pre-oxidation process on enhancing Microcystis aeruginosa (M. aeruginosa) removal by post coagulation were investigated. The results demonstrated that pretreatment with PM/BS process effectively promoted the algae removal by coagulation with Al2(SO4)3 as the coagulant and this phenomenon was more obvious with the increase of water hardness. Compared to the sole coagulation, PM/BS pre-oxidation combing with coagulation could neutralize the zeta potential of algal cells effectively, decrease the algal cell size, and lead to the formation of more compact flocs due to the in-situ generated MnO2. The effect of oxidant dosages on algal organic matter (AOM) was also studied and no obvious release of macromolecular substances was observed with the dosage of KMnO4 increasing from 3.0 mg/L to 7.0 mg/L, suggesting the integrity of algal cells at a high KMnO4 dosage. Moreover, PM/BS pre-oxidation could lead to the decrease of most analyzed disinfection by-products (DBPs) at a Al2(SO4)3 dosage of 40.0 mg/L. The algae removal efficiency was also significantly enhanced by PM/BS pre-oxidation in the test using real algae-laden water. This study indicated that PM/BS process might be a potential assistant technology for algae removal by subsequent coagulation.
  • 加载中
    1. [1]

      B.Q. Qin, P.Z. Xu, Q.L. Wu, L.C. Luo, Y.L. Zhang, Hydrobiologia 581 (2007) 3-14.  doi: 10.1007/s10750-006-0521-5

    2. [2]

      P.C. Xie, J. Ma, J.Y. Fang, et al., Environ. Sci. Technol. 47 (2013) 14051-14061.  doi: 10.1021/es4027024

    3. [3]

      S.Q. Zhou, Y.S. Shao, N.Y. Gao, et al., Water Res. 52 (2014) 199-207.

    4. [4]

      J.O. Jo, S.D. Kim, H.J. Lee, Y.S. Mok, Chem. Eng. J. 247 (2014) 291-301.  doi: 10.1016/j.cej.2014.03.018

    5. [5]

      A. Zamyadi, Y. Fan, R.I. Daly, M. Prevost, Water Res. 47 (2013) 1080-1090.

    6. [6]

      J.Y. Fang, J. Ma, X. Yang, C. Shang, Water Res. 44 (2010) 1934-1940.

    7. [7]

      B.G. Zhang, S.Q. Zou, R.Q. Cai, M. Li, Z. He, Appl. Catal. B 224 (2018) 383-393.  doi: 10.1016/j.apcatb.2017.10.065

    8. [8]

      Q. Lv, B.G. Zhang, X. Xing, et al., J. Hazard. Mater. 347 (2018) 141-149.  doi: 10.1016/j.jhazmat.2017.12.070

    9. [9]

      S.D. Richardson, M.J. Plewa, E.D. Wagner, R. Schoeny, D.M. DeMarini, Mutat. Res. 636 (2007) 178-242.  doi: 10.1016/j.mrrev.2007.09.001

    10. [10]

      D.M. Mcknight, S.W. Chisholm, D.R.F. Harleman, Environ. Manage. 7 (1983) 311-320.  doi: 10.1007/BF01866913

    11. [11]

      A. Zamyadi, S. Dorner, S. Sauve, et al., Water Res. 47 (2013) 2689-2700.

    12. [12]

      S. Babel, S. Takizawa, Desalination 261 (2010) 46-51.  doi: 10.1016/j.desal.2010.05.038

    13. [13]

      B. Liu, F.S. Qu, H. Liang, et al., J. Membr. Sci. 528 (2017) 178-186.  doi: 10.1016/j.memsci.2017.01.032

    14. [14]

      M.A. Shannon, P.W. Bohn, M. Elimelech, et al., Nature 452 (2008) 301-310.  doi: 10.1038/nature06599

    15. [15]

      P.L. Jia, Y.P. Zhou, X.F. Zhang, Y. Zhang, R.H. Dai, Water Res. 131 (2018) 122-130.

    16. [16]

      W.F.R. Bare, N.B. Jones, E.J. Middlebrooks, J. Water Pollut. Control Fed. 47 (1975) 153-169.

    17. [17]

      B. Liu, F.S. Qu, W. Chen, et al., Water Res. 125 (2017) 72-80.

    18. [18]

      P.C. Xie, Y.Q. Chen, J. Ma, et al., Chemosphere 155 (2016) 550-563.  doi: 10.1016/j.chemosphere.2016.04.003

    19. [19]

      R. Henderson, S.A. Parsons, B. Jefferson, Water Res. 42 (2008) 1827-1845.

    20. [20]

      J.J. Chen, H.H. Yeh, I.C. Tseng, Chemosphere 74 (2009) 840-846.  doi: 10.1016/j.chemosphere.2008.10.009

    21. [21]

      J. Ma, W. Liu, Water Res. 36 (2002) 871-878.

    22. [22]

      M. Ma, R.P. Liu, H.J. Liu, J.H. Qu, W. Jefferson, Sep. Purif. Technol. 86 (2012) 19-25.  doi: 10.1016/j.seppur.2011.10.015

    23. [23]

      Y.Q. Chen, P.C. Xie, Z.P. Wang, R. Shang, S.L. Wang, J. Hazard. Mater. 322 (2017) 508-515.  doi: 10.1016/j.jhazmat.2016.10.017

    24. [24]

      Z.Y. Zhang, D.Y. Ji, W.T. Mao, et al., Angew. Chem. Int. Ed. 57 (2018) 10949-10953.  doi: 10.1002/anie.201805998

    25. [25]

      I.A. Katsoyiannis, S. Canonica, U. von Gunten, Water Res. 45 (2011) 3811-3822.

    26. [26]

      J.Y. Fang, Y. Fu, C. Shang, Environ. Sci. Technol. 48 (2014) 1859-1868.  doi: 10.1021/es4036094

    27. [27]

      Q.Y. Wu, Y.T. Zhou, W. Li, et al., Water Res. 162 (2019) 43-52.

    28. [28]

      J. Naceradska, M. Pivokonsky, L. Pivokonska, et al., Water Res.114 (2017) 42-49.

    29. [29]

      J. Qi, H. Lan, S. Miao, et al., Water Res. 88 (2016) 127-134.

    30. [30]

      B. Sun, X. Guan, J. Fang, P.G. Tratnyek, Environ. Sci. Technol. 49 (2015) 12414-12421.  doi: 10.1021/acs.est.5b03111

    31. [31]

      B. Sun, H. Dong, D. He, D. Rao, X. Guan, Environ. Sci. Technol. 50 (2016) 1473-1482.  doi: 10.1021/acs.est.5b05207

    32. [32]

      B. Sun, D. Li, W. Linghu, X. Guan, Chem. Eng. J. 339 (2018) 144-152.  doi: 10.1016/j.cej.2018.01.131

    33. [33]

      B. Sun, Z. Xiao, H. Dong, et al., J. Hazard. Mater. 363 (2019) 412-420.  doi: 10.1016/j.jhazmat.2018.10.002

    34. [34]

      J. Chen, D. Rao, H. Dong, et al., J. Hazard. Mater. (2019) 121735.

    35. [35]

      J.Q. Jiang, B. Lloyd, Water Res. 36 (2002) 1397-1408.

    36. [36]

      J.J. Chen, H.H. Yeh, Water Res. 39 (2005) 4420-4428.

    37. [37]

      J. Ma, N. Graham, G. Li, J. Water Supply Res. Technol. AQUA 46 (1997) 1-10.

    38. [38]

      T.T. Guo, Y.L. Yang, R.P. Liu, X. Li, Sep. Purif. Technol. 189 (2017) 279-287.  doi: 10.1016/j.seppur.2017.06.066

    39. [39]

      X.X. Ma, Y.A. Wang, S.Q. Feng, S.B. Wang, Environ. Earth Sci. 74 (2015) 3795-3804.  doi: 10.1007/s12665-015-4093-4

    40. [40]

      W. Chen, P. Westerhoff, J.A. Leenheer, K. Booksh, Environ. Sci. Technol. 37 (2003) 5701-5710.  doi: 10.1021/es034354c

    41. [41]

      J. Qi, H.C. Lan, S.Y. Miao, et al., Water Res. 88 (2016) 127-134.

    42. [42]

      L. Li, N.Y. Gao, Y. Deng, J.J. Yao, K.J. Zhang, Water Res. 46 (2012) 1233-1240.

    43. [43]

      Y. Mao, D. Guo, W. Yao, et al., Water Res. 130 (2018) 322-332.

    44. [44]

      A.D. Shah, W.A. Mitch, Environ. Sci. Technol. 46 (2012) 119-131.  doi: 10.1021/es203312s

  • 加载中
    1. [1]

      Bi KeyingTan RuiHao RuitingMiao LanxiHe YanqiWu XianghuaZhang JunfengXu Rui . A carbazole-hemicyanine dye based ratiometric fluorescent probe for selective detection of bisulfite (HSO3-) in cells and C. elegans. Chinese Chemical Letters, 2019, 30(3): 545-548. doi: 10.1016/j.cclet.2018.11.020

    2. [2]

      Xu JunchaoYuan HouqunZeng LintaoBao Guangming . Recent progress in Michael addition-based fluorescent probes for sulfur dioxide and its derivatives. Chinese Chemical Letters, 2018, 29(10): 1456-1464. doi: 10.1016/j.cclet.2018.08.012

    3. [3]

      Arash Shokrolahi Abbas Zali Mohammad Hossein Kes . Wet carbon-based solid acid/potassium permanganate as an efficient heterogeneous reagents for oxidation of alcohols under mild conditions. Chinese Chemical Letters, 2008, 19(11): 1274-1276. doi: 10.1016/j.cclet.2008.09.020

    4. [4]

      YU Rui-Peng WANG Li-Ping ZHAO Chen-Kai WU Sheng-Fang SONG Qi-Jun . Determination of Volatile Metabolites in Microcystis Aeruginosa Using Headspace-Solid Phase Microextraction Arrow Combined with Gas Chromatography-Mass Spectrometry. Chinese Journal of Analytical Chemistry, 2020, 48(6): 750-756. doi: 10.19756/j.issn.0253-3820.191616

    5. [5]

      HAN Bing-Yan YAN Qin XIN Ze YAN Qi-Fang JIANG Jing-Mei . Gold Nanoclusters Positioned on Outer Surface of Zeolitic Imidazolate Framework-8 for Improvement of Emission Intensity and Selectivity in Detection of Permanganate. Chinese Journal of Analytical Chemistry, 2020, 48(8): 1025-1032. doi: 10.19756/j.issn.0253-3820.201163

    6. [6]

      Qian Jian-GangGu Ti-Ren . Effect of Adsorption and Surface Micellization of Dodecylammonium Acetate on the Stability of Silica Suspension. Acta Physico-Chimica Sinica, 1996, 12(08): 698-703. doi: 10.3866/PKU.WHXB19960806

    7. [7]

      LI XuXU Sheng-HuaSUN Zhi-Wei . Brownian Dynamics Simulation of the Influence of Hydrodynamic Interaction on Particle Coagulation. Acta Physico-Chimica Sinica, 2009, 25(10): 2130-2136. doi: 10.3866/PKU.WHXB20091026

    8. [8]

      Jin Shi MA Fang YAN Chang Qi WANG Jin Hua CHEN . ADDITION OF SODIUM BISULFITE TO BILIVERDIN. Chinese Chemical Letters, 1990, 1(2): 171-172.

    9. [9]

      QI Shao-Long DU Jian-Shi LI Rong-Hang LI Qiang ZHU Lu-Bao SHI Ya-Nan WANG Xin-Yu YANG Qing-Biao ZHANG Gui-Rong LI Yao-Xian . Synthesis of Water-soluble Fluorescent Probe for Dual Detection of HSO3- and pH Value. Chinese Journal of Analytical Chemistry, 2020, 48(3): 347-354. doi: 10.19756/j.issn.0253-3820.191609

    10. [10]

      Feng Ting LI Xia LI Bing Ru ZHANG Qing Hua OUYANG . Removal of Heavy Metals in Effluent by Adsorption and Coagulation. Chinese Chemical Letters, 2004, 15(1): 83-86.

    11. [11]

      Yun Ming LI Mi Wen CHEN Guo Jun XU Su Hui OU Kai WANG . SLOW PELLETING COAGULATION OF POLYMER LATEX EMULSION. Chinese Chemical Letters, 1996, 7(3): 297-298.

    12. [12]

      CHEN SongWANG YuZHAO Bao-YuCHEN ZhuoHUANG Ming-Dong . Maltose-binding Protein Improving the Crystallizability of C2 Domain of Human Coagulation Factor V. Chinese Journal of Structural Chemistry, 2014, 33(2): 216-222.

    13. [13]

      Hui Chen Li Li Min Zhou Yong Jun Ma . Flow-injection chemiluminescence determination of tryptophan using galangin-potassium permanganate-polyphosphoric acid system. Chinese Chemical Letters, 2008, 19(2): 203-206. doi: 10.1016/j.cclet.2007.10.050

    14. [14]

      Jun Ping Xiao Qing Xiang Zhou Hua Hua Bai . Preconcentration of copper with multi-walled carbon nanotubes pretreated by potassium permanganate cartridge for solid phase extraction prior to flame atomic absorption spectrometry. Chinese Chemical Letters, 2007, 18(6): 714-717. doi: 10.1016/j.cclet.2007.04.024

    15. [15]

      Li ShuihongLeung Polly H.M.Xu XinyaWu Chunhui . Homogentisic acid γ-lactone suppresses the virulence factors of Pseudomonas aeruginosa by quenching its quorum sensing signal molecules. Chinese Chemical Letters, 2018, 29(2): 313-316. doi: 10.1016/j.cclet.2017.09.052

    16. [16]

      Zheng XinyuCao QiaoCao QinMao FeiLi XiaokangZhu JinLan LefuLi Jian . Discovery of synergistic activity of fluoroquinolones in combination with antimicrobial peptides against clinical polymyxin-resistant Pseudomonas aeruginosa DK2. Chinese Chemical Letters, 2020, 31(2): 413-417. doi: 10.1016/j.cclet.2019.07.063

    17. [17]

      Hong Xing WANG Gao Ju ZHANG Wen Xiang GU Zhen Wei HUAN Jin Pei CHENG . Cyclopropanation Versus Deoxygenation in the Reactions of Halocarbenes with pre-Aromatic Ketones. Chinese Chemical Letters, 1999, 10(4): 271-272.

    18. [18]

      Bao Chun LIU Qi LIANG Shui Hua TANG Li Zhen GAO Bo Lan ZHANG Mei Zhen QU Zuo Long YU . Production of Carbon Nanotubes over Pre-reduced LaCoO3 Using Fluidized-bed Reactor. Chinese Chemical Letters, 2000, 11(11): 1031-1034.

    19. [19]

      Jin Mao YOU Xin Jun FAN Qing Yu OU . HPLC of Amino Acids and Oligopeptides by Pre-Column Fluorescence Derivatization with 9-Acridine Formyl Chloride. Chinese Chemical Letters, 1997, 8(10): 875-878.

    20. [20]

      Jin Mao YOU Xing Jun FAN Qing Yu OU Qing Cun ZHU . HPLC Determination of Amino Acids by Pre-Column Fluorescence Derivatization with Carbazole-9-yl-Acetyl Chloride. Chinese Chemical Letters, 1998, 9(3): 281-285.

Metrics
  • PDF Downloads(1)
  • Abstract views(121)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return