Citation: Huang Cheng-Mi, Li Jian, Wang Shun-Yi, Ji Shun-Jun. TFA promoted multi-component reaction of aryldiazonium with sodium metabisulphite and thiols: Construction of thiosulfonate under transition-metal free conditions[J]. Chinese Chemical Letters, ;2020, 31(7): 1923-1926. doi: 10.1016/j.cclet.2019.12.032 shu

TFA promoted multi-component reaction of aryldiazonium with sodium metabisulphite and thiols: Construction of thiosulfonate under transition-metal free conditions

Figures(6)

  • A TFA promoted multi-component reaction of aryldiazonium with sodium metabisulphite and thiols to construct thiosulfonates under transition-metal free conditions is reported. The thiosulfonates were isolated in good yields with broad tolerance of functional group. Readily available inorganic Na2S2O5 was applied as the sulfur dioxide surrogate. This strategy features easily available substrates, mild reaction conditions and free transition-metal catalyst.
  • 加载中
    1. [1]

      (a) J.P. Weidner, S.S. Block, J. Med. Chem. 7(1964) 671-673;
      (b) S.S. Block, J.P. Weidner, Dev. Ind. Microbiol. 4(1963) 213-217;
      (c) N.S. Zefirov, N.V. Zyk, E.K. Beloglazkina, A.G. Kutateladze, Sulfur Rep. 14(1993) 223-240;
      (d) P. Natarajan, Tetrahedron Lett. 56(2015) 4131-4134.

    2. [2]

      (a) B.M. Trost, Chem. Rev. 78(1978) 363-382;
      (b) M.G. Ranasinghe, P.L. Fuchs, Synth. Commun. 18(1988) 227-230;
      (c) K. Fujiki, E. Yoshida, Synth. Commun. 29(1999) 3289-3294;
      (d) K. Fujiki, S. Akieda, H. Yasuda, Y. Sasaki, Synthesis 7(2001) 1035-1042;
      (e) S. Kim, S. Kim, N. Otsuka, I. Ryu, Angew. Chem. Int. Ed. 44(2005) 6183-6186;
      (f) V. Girijavallabhan, C. Alvarezand, F.G. Njoroge, J. Org. Chem. 76(2011) 6442-6446;
      (g) Z.H. Peng, X. Zheng, Y.J. Zhang, D.L. An, W.R. Dong, Green Chem. 20(2018) 1760-1764.

    3. [3]

      (a) L. Field, T.F. Parsons, J. Org. Chem. 30(1965) 657-659;
      (b) E. Block, J.O.' Connor, J. Am. Chem. Soc. 96(1974) 3921-3929;
      (c) Y. Wang, J.H. Espenson, J. Org. Chem. 65(2000) 104-107;
      (d) V. Nair, A. Augustine, Org. Lett. 5(2003) 543-544;
      (e) M.T. Cai, G.S. Lv, J.X. Chen, et al., Chem. Lett. 39(2010) 368-369;
      (f) S. Sobhani, S. Aryanejad, M.F. Maleki, Synlett (2011) 319-322;
      (g) M. Kirihara, S. Naito, Y. Ishizuka, H. Hanai, T. Noguchi, Tetrahedron Lett. 52(2011) 3086-3089;
      (h) K. Bahrami, M.M. Khodaei, D. Khaledian, Tetrahedron Lett. 53(2012) 354-358;
      (i) M. Kirihara, S. Naito, Y. Nishimura, Y. Ishizuka, et al., Tetrahedron 70(2014) 2464-2471;
      (j) T.X.T. Luu, T.T.T. Nguyen, T.N. Le, J. Spanget-Larsen, F. Duus, J. Sulfur. Chem. 36(2015) 340-350;
      (k) P.K. Shyam, Y.K. Kim, C. Lee, H.Y. Jang, Adv. Synth. Catal. 358(2016) 56-61.

    4. [4]

      (a) Y.L. Yang, B. Rajagopal, C.F. Liang, et al., Tetrahedron 69(2013) 2640-2646;
      (b) Y. Liu, Y. Zhang, Tetrahedron Lett. 44(2003) 4291-4294;
      (c) G. Kumaraswamy, R. Raju, V. Narayanarao, RSC Adv. 5(2015) 22718-22723.

    5. [5]

      M. Xia, Z.C. Chen, Synth. Commun. 27(1997) 1309.
       

    6. [6]

      (a) M.D. Bentley, I.B. Douglass, J.A. Lacadie, J. Org. Chem. 37(1972) 333-334;
      (b) T. Billard, B.R. Langlois, S. Large, et al., J. Org. Chem. 61(1996) 7545-7550;
      (c) K. Fujiki, N. Tanifuji, Y. Sasaki, T. Yokoyama, Synthesis 3(2002) 343-348;
      (d) G. Liang, M. Liu, et al., Chin. J. Chem. 30(2012) 1611-1616;
      (e) G. Liang, J. Chen, J. Chen, et al., Tetrahedron Lett. 53(2012) 6768-6770.

    7. [7]

      (a) N. Taniguchi, J. Org. Chem. 80(2015) 1764-1770;
      (b) G.Y. Zhang, S.S. Lv, A. Shoberu, J.P. Zou, J. Org. Chem. 82(2017) 9801-9807;
      (c) Z.H. Peng, X. Zheng, Y.J. Zhang, D.L. An, W.R. Dong, Green Chem. 20(2018) 1760-1764;
      (d) Q. Chen, Y.L. Huang, X.F. Wang, J.W. Wu, G.D. Yu, Org. Biomol. Chem. 16(2018) 1713-1719.

    8. [8]

      L. Cao, S.H. Luo, K. Jiang, et al., Org. Lett. 20(2018) 4754-4758.
       

    9. [9]

      (a) Z.Y. Mo, T.R. Swaroop, Z.F. Chen, et al., Green Chem. 20(2018) 4428-4432;
      (b) X.F. Zhang, C. Cui, Y.H. Zhang, et al., Adv. Synth. Catal. 361(2019) 2014-2019.

    10. [10]

      (a) M. Luo, X.H. Zhang, D. Darensbourg, Acc. Chem. Res. 49(2016) 2209-2219;
      (b) G. Adaros, H.J. Weigel, H.J. Jauger, New Phytol. 108(1988) 67-74.

    11. [11]

      B. Nguyen, E.J. Emmett, M.C. Willis, J. Am. Chem. Soc. 132(2010) 16372-16373.
       

    12. [12]

      (a) F.S. He, Y.Q. Wu, X.F. Li, H.G. Xia, J. Wu, Org. Chem. Front. 6(2019) 1873-1878;
      (b) X.F. Wang, M. Yang, W.L. Xie, X.N. Fan, Jie Wu, Chem. Commun. 55(2019) 6010-6013;
      (c) J. Zhang, W.L. Xie, S.Q. Ye, J. Wu, Org. Chem. Front. 6(2019) 1863-1867;
      (d) Y. Zong, Y.M. Lang, M. Yang, et al., Org. Lett. 21(2019) 1935-1938;
      (e) S.Q. Ye, D.Q. Zheng, J. Wu, G.Y.S. Qiu, Chem. Commun. 55(2019) 2214-2217;
      (f) X.F. Wang, H.Z. Li, G.Y.S. Qiu, J. Wu, Chem. Commun. 55(2019) 2062-2065;
      (g) D.Q. Zheng, J. Yu, J. Wu, Angew. Chem. Int. Ed. 55(2016) 11925-11929;
      (h) F. Liu, J.Y. Wang, B. Jiang, et al., Angew. Chem. Int. Ed. 56(2017) 15570-15574;
      (i) K.D. Zhou, J. Zhang, G.Y.S. Qiu, J. Wu, Org. Lett. 21(2019) 275-278;
      (j) H.J. Chen, M.L. Liu, G.Y.S. Qiu, J. Wu, Adv. Synth. Catal. 361(2019) 146-150;
      (k) S. Ye, J. Wu, Chem. Commun. 48(2012) 7753-7755;
      (l) X.Y. Qin, L. He, J. Li, B. Jiang, et al., Chem. Commun. 55(2019) 3227-3230;
      (m) S. Liu, K. Chen, W.J. Hao, et al., J. Org. Chem. 84(2019) 1964-1971;
      (n) Z.J. Shen, Y.N. Wu, C.L. He, et al., Chem. Commun. 54(2018) 445-448;
      (o) T.H. Zhu, X.C. Zhang, K. Zhao, T.P. Loh, Org. Chem. Front. 6(2019) 94-98;
      (p) T.H. Zhu, X.C. Zhang, X.L. Cui, et al., Adv. Synth. Catal. 361(2019) 1-7.

    13. [13]

      (a) G. Li, Z. Gan, K. Kong, X. Dou, D. Yang, Adv. Synth. Catal. 361(2019) 1808-1814;
      (b) A.M. Nair, S. Kumar, L. Halder, C.M.R. Volla, Org. Biomol. Chem. 17(2019) 5897-5901.

    14. [14]

      (a) X.X. Gong, J.H. Chen, L.F. Lai, et al., Chem. Commun. 54(2018) 11172-11175;
      (b) H.T. Dang, V.T. Nguyen, V.D. Nguyen, H.D. Armana, O.V. Larionov, Org. Biomol. Chem. 16(2018) 3605-3609;
      (c) M. Wang, J.Y. Zhao, X.F. Jiang, ChemSusChem 12(2019) 3064-3068;
      (d) X.X. Gong, M.J. Wang, S.Q. Ye, J. Wu, Org. Lett. 21(2019) 1156-1160;
      (e) G.Y.S. Qiu, K.D. Zhou, J. Wu, Chem. Commun. 54(2018) 12561-12569;
      (f) M. Wang, Q.L. Fan, X.F. Jiang, Green Chem. 20(2018) 5469-5473.

    15. [15]

      (a) U.M.V. Basavanag, A. Dos Santos, L. El Kaim, R. Gamez Montano, L. Grimaud, Angew. Chem. Int. Ed. 52(2013) 7194-7197;
      (b) D. Koziakov, A.J.V. Wangelin, Org. Biomol. Chem. 15(2017) 6715-6719;
      (c) F.P. Crisostomo, T. Martin, R. Carrillo, Angew. Chem. Int. Ed. 53(2014) 2181-2185;
      (d) M. Hartmann, Y. Li, A. Studer, J. Am. Chem. Soc. 134(2012) 16516-16519;
      (e) R. Huisgen, L. Krause, Ann. Chem. 574(1951) 157-171;
      (f) D. Koziakov, G.J. Wu, A.J. von Wangelin, Org. Biomol. Chem. 16(2018) 4942-4953;
      (g) N. Naveen, S. Sengupta, S. Chandrasekaran, J. Org. Chem. 83(2018) 3562-3569;
      (h) S.L. Yi, M.C. Li, X.Q. Hu, W.M. Mo, Z.L. Shen, Chin. Chem. Lett. 27(2016) 1505-1508;
      (i) H.X. Xu, Q.C. Wang, Chin. Chem. Lett. 30(2019) 337-339;
      (j) K.B. Ouyang, W. Hao, W.X. Zhang, Z.F. Xi, Chem. Rev. 115(2015) 12045-12090;
      (k) Q.J. Wang, Y.J. Su, L.X. Li, H.M. Huang, Chem. Soc. Rev. 45(2016) 1257-1272;
      (l) D. Koziakov, A.J. von Wangelin, Org. Biomol. Chem. 15(2017) 6715-6719.

  • 加载中
    1. [1]

      Minjun YinYuhui LinManli ZhuangWei XiaoJie Wu . Photoredox-catalyzed synthesis of α,α-difluoromethyl-β-alkoxysulfones from sulfur dioxide. Chinese Chemical Letters, 2025, 36(3): 109926-. doi: 10.1016/j.cclet.2024.109926

    2. [2]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    3. [3]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    4. [4]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    5. [5]

      Haiying Lu Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334

    6. [6]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    7. [7]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    8. [8]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    9. [9]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    10. [10]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    11. [11]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    12. [12]

      Huaixiang YangMiao-Miao LiAijun ZhangJiefei GuoYongqi YuWei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425

    13. [13]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    14. [14]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    15. [15]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    16. [16]

      Changyuan BaoYunpeng JiangHaoyin ZhongHuaizheng RenJunhui WangBinbin LiuQi ZhaoFan JinYan Meng ChongJianguo SunFei WangBo WangXimeng LiuDianlong WangJohn Wang . Synergizing 3D-printed structure and sodiophilic interface enables highly efficient sodium metal anodes. Chinese Chemical Letters, 2024, 35(11): 109353-. doi: 10.1016/j.cclet.2023.109353

    17. [17]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    18. [18]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    19. [19]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    20. [20]

      Xinxiu YanXizhe HuangYangyang LiuWeishang JiaHualin ChenQi YaoTao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426

Metrics
  • PDF Downloads(5)
  • Abstract views(791)
  • HTML views(91)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return