Citation: Ye Junmei, Zhang Runmiao, Yang Wenjuan, Han Ying, Guo Hao, Xie Ju, Yan Chaoguo, Yao Yong. Pillar[5]arene-based[3]rotaxanes: Convenient construction via multicomponent reaction and pH responsive self-assembly in water[J]. Chinese Chemical Letters, ;2020, 31(6): 1550-1553. doi: 10.1016/j.cclet.2019.11.041 shu

Pillar[5]arene-based[3]rotaxanes: Convenient construction via multicomponent reaction and pH responsive self-assembly in water

    * Corresponding authors.
    E-mail addresses: hanying@yzu.edu.cn (Y. Han), yaoyong1986@ntu.edu.cn (Y. Yao).
  • Received Date: 28 September 2019
    Revised Date: 19 November 2019
    Accepted Date: 25 November 2019
    Available Online: 25 November 2019

Figures(4)

  • Four pillar[5]arene based [3]rotaxanes (1-4) involving two 1,4-diethoxypillar[5]arene (DEP5) rings and a dumbbell-shaped component were successfully synthesized. The dumbbell-shape molecules contain one longer bridge, two triazole sites and two multicomponent stoppers. After threading DEP5 rings with linear guests (G1-G4) which contain two benzaldehyde units, the base catalyzed three-component reaction of dimedone, malononitrile and benzaldehyde was performed to construct the stoppers and connected the pseudorotaxanes with stoppers to generate 1–4. The structures of [3]rotaxanes and their self-assembly behaviors were characterized by 1H NMR, 13C NMR, NOESY, HR-ESI-MS, DLS and TEM technologies. We hope that pillar[5]arene based [3]rotaxanes may have potential applications in drug delivery systems and molecular devices.
  • 加载中
    1. [1]

      (a) K.D. Hanni, D.A. Leigh, Chem. Soc. Rev. 39 (2010) 1240-1251;
      (b) M.D. Lankshear, P.D. Beer, Acc. Chem. Res. 40 (2007) 657-668;
      (c) T. Ikeda, M. Higuchi, D.G. Kurth, J. Am. Chem. Soc. 131 (2009) 9158-9159;
      (d) M. He, L. Chen, B. Jiang, et al., Chin. Chem. Lett. 30 (2019) 131-134.

    2. [2]

      (a) T. Ogoshi, D. Yamafuji, T. Aoki, T.A. Yamagishi, Chem. Commun. (Camb.) 48 (2012) 6842-6844;
      (b) Y. Yao, X.J. Wei, Y. Cai, et al., J. Colloid Interf. Sci. 533 (2019) 42-46.

    3. [3]

      E.M.G. Jamieson, F. Modicom, S.M. Goldup, Chem. Soc. Rev. 47(2018) 5266-5311.  doi: 10.1039/C8CS00097B

    4. [4]

      (a) Y. Liu, Q. Zhang, W.H. Jin, et al., Chem. Commun. (Camb.) 54 (2018) 10642-10645;
      (b) T.G. Zhan, H.H. Yin, S.T. Zheng, et al., Chem. Commun. (Camb.) 54 (2018) 9356-9359;
      (c) G. Gholami, K. Zhu, G. Baggi, et al., Chem. Sci. 8 (2017) 7718-7723;
      (d) W. Wu, S. Song, X. Cui, et al., Chin. Chem. Lett. 29 (2018) 95-98;
      (e) R. Zhang, C. Wang, R. Long, et al., Front. Chem. 7 (2019) 508.

    5. [5]

      T. Ogoshi, S. Kanai, S. Fujinami, et al., J. Am. Chem. Soc. 130 (2008) 5022-5023.  doi: 10.1021/ja711260m

    6. [6]

      (a) S. Sun, D. Lu, Q. Huang, et al., Colloids Interface Sci. Commun. 533 (2019) 42-46;
      (b) S. Sun, M. Geng, L. Huang, et al., Chem. Commun. (Camb.) 54 (2018) 13006-13009;
      (c) K. Jie, Y. Zhou, E. Li, et al., Acc. Chem. Res. 51 (2018) 2064-2072;
      (d) Y. Zhang, W. Zhu, X. Huang, et al., ACS Sust. Chem.Eng. 6 (2018)16597-16606;
      (e) E. Li, K. Jie, Y. Zhou, et al., J. Am. Chem. Soc. 140 (2018) 15070-15079;
      (f) J.R. Wu, A. Mu, B. Li, et al., Angew. Chem. Ing. Ed. 57 (2018) 9853-9858;
      (g) M. Zuo, W. Qian, Z. Xu, et al., Small 14 (2018) 1801942;
      (h) L.L. Zhao, Y. Han, C.G. Yan, Chin. Chem. Lett. 31 (2020) 81-83;
      (i) C.B. Yin, Y. Han, G.F. Huo, et al., Chin. Chem. Lett. 28 (2017) 431-436;
      (j)J.Chen, Y.Wang, C.Wang, etal., Chem.Commun.(Camb.)55 (2019)6817-6826.

    7. [7]

      (a) T. Xiao, L. Zhou, L. Xu, et al., Chin. Chem. Lett. 30 (2019) 271-276;
      (b) T. Xiao, W. Zhong, L. Xu, X.Q. Sun, X.Y. Hu, L. Wang, Org. Biomol. Chem. 17 (2019) 1336-1350;
      (c) Y. Wang, T. Liu, J. Jiang, et al., Dalton Trans. 48 (2019) 6333-6336.

    8. [8]

      (a) Q. Wang, L. Tian, J. Xu, et al., Chem. Commun. (Camb.) 54 (2018) 10328-10331;
      (b) K. Yang, K. Yang, S. Chao, et al., Chem. Commun. (Camb.) 54 (2018) 9817-9820;
      (c) H. Shi, X. Cheng, Q. Lin, et al., Chin. J. Org. Chem. 38 (2018) 1718-1724;
      (d) Y. Sun, F. Zhang, J. Quan, et al., Nat. Comm. 9 (2018) 2617;
      (e) J.Y. Chen, W.W. Hao, M. Zhang, et al., Faraday Discuss. 209 (2018) 149-159;
      (f) J. Wu, J. Tian, L. Rui, W. Zhang, Chem. Commun. (Camb.) 54 (2018) 7629-7632.

    9. [9]

      (a) X.S. Du, C.Y. Wang, Q. Jia, et al., Chem. Commun. (Camb.) 53 (2017) 5326-5329;
      (b) S. Dong, J. Yuan, F. Huang, Chem. Sci. 5 (2014) 247-252;
      (c) X. Zeng, H. Deng, X. Jia, et al., Chem. Commun. (Camb.) 54 (2018) 11634-11637;
      (d) Y. Han, C.Y. Nie, S. Jiang, J. Sun, C.G. Yan, Chin. Chem. Lett. 31 (2020) 725-728.

    10. [10]

      C.L. Sun, K.X. Teng, L.Y. Niu, Y.Z. Chen, Q.Z. Yang, Acta Chim. Sinica 76 (2018) 779-784.  doi: 10.6023/A18070258

    11. [11]

      D. Xia, P. Wei, B. Shi, F. Huang, Chem. Commun. (Camb.) 52 (2016) 513-516  doi: 10.1039/C5CC08038J

  • 加载中
    1. [1]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    2. [2]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    3. [3]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    4. [4]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    5. [5]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    6. [6]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    7. [7]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    8. [8]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    9. [9]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    10. [10]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    11. [11]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    12. [12]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    13. [13]

      Jingyu ChenSha WuYuhao WangJiong Zhou . Near-perfect separation of alicyclic ketones and alicyclic alcohols by nonporous adaptive crystals of perethylated pillar[5]arene and pillar[6]arene. Chinese Chemical Letters, 2025, 36(4): 110102-. doi: 10.1016/j.cclet.2024.110102

    14. [14]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    15. [15]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    16. [16]

      Dongpu WuZheng YangYuchen XiaLulu WuYingxia ZhouCaoyuan NiuPuhui XieXin ZhengZhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353

    17. [17]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    18. [18]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    19. [19]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    20. [20]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

Metrics
  • PDF Downloads(4)
  • Abstract views(1116)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return