Citation: Huang Yuanqiong, Lv Xueli, Song Hongjian, Liu Yuxiu, Wang Qingmin. Rh(III)-catalyzed C8 arylation of quinoline N-oxides with arylboronic acids[J]. Chinese Chemical Letters, ;2020, 31(6): 1572-1575. doi: 10.1016/j.cclet.2019.11.028 shu

Rh(III)-catalyzed C8 arylation of quinoline N-oxides with arylboronic acids

    * Corresponding authors at: State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
    E-mail addresses: songhongjian@nankai.edu.cn (H. Song), wangqm@nankai.edu.cn (Q. Wang).
  • Received Date: 14 September 2019
    Revised Date: 16 November 2019
    Accepted Date: 18 November 2019
    Available Online: 19 November 2019

Figures(6)

  • Herein, we report the first RhIII-catalyzed regioselective C8 arylation of quinoline N-oxides with commercially available arylboronic acids as coupling partners. This procedure is simple, and the reaction shows perfect regioselectivity, a broad substrate scope, and isolated yields of up to 92%. We demonstrate the utility of the reaction by using it for late-stage functionalization of a fungicide.
  • 加载中
    1. [1]

      (a) Z. Wu, Z. Zhen, J.H. Jiang, G.L. Shen, R.Q. Yu, J. Am. Chem. Soc. 131 (2009) 12325-12332;
      (b) W.A. Denny, B.F. Cain, G.J. Atwell, et al., J. Med. Chem. 25 (1982) 276-315;
      (c) A.B. Burgin, O.T. Magnusson, J. Singh, et al., Curr. Med. Chem. 18 (2011) 1488-1508.

    2. [2]

      (a) J.vanGeer, J.A.J.Hanraads, R.A.Lupton, etal., J.Sci.Commun.163 (2010)51-59;
      (b) G. Höfle, B. Kunze, J. Nat. Prod. 71 (2008) 1843-1849;
      (c) J.P. Michael, Nat. Prod. Rep. 24 (2007) 223-246;
      (d) Q.A. Khan, J. Lu, S.M. Hecht, J. Nat. Prod. 72 (2009) 438-442.

    3. [3]

      (a) J.I. Kim, I.S. Shin, H. Kim, J.K. Lee, J. Am. Chem. Soc. 127 (2005) 1614-1615;
      (b) G. Yang, Y. Si, Z. Su, Org. Biomol. Chem. 10 (2012) 8418-8425.

    4. [4]

      (a) M. Nakajima, M. Saito, M. Shiro, S.I. Hashimoto, J. Am. Chem. Soc.120 (1998) 6419-6420;
      (b) S.E. Denmark, Y. Fan, J. Am. Chem. Soc. 124 (2002) 4233-4235;
      (c) M.S. Taylor, E.N. Jacobsen, PNAS 101 (2004) 5368-5373;
      (d) C. Verrier, P. Melchiorre, Chem. Sci. 6 (2015) 4242-4246;
      (e) M. Moliterno, R. Cari, A.A. Antenucci, et al., Angew. Chem. Int. Ed. 55 (2016) 6525-6529.

    5. [5]

      (a) A.E. Shilov, G.B. Shul0pin, Chem. Rev. 97 (1997) 2879-2932;
      (b) R.G. Bergman, Nature 446 (2007) 391-393;
      (c) O. Daugulis, H.Q. Do, D. Shabashov, Acc. Chem. Res. 42 (2009) 1074-1086;
      (d) D.A. Colby, R.G. Bergman, J.A. Ellman, Chem. Rev. 110 (2010) 624-655;
      (e) L. Ackermann, Chem. Rev. 111 (2011) 1315-1345;
      (f) K.M. Engle, T.S. Mei, M. Wasa, J.Q. Yu, Acc. Chem. Res. 45 (2011) 788-802;
      (g) B.J. Li, Z.J. Shi, Chem. Soc. Rev. 41 (2012) 5588-5598;
      (h) J. Yamaguchi, A.D. Yamaguchi, K. Itami, Angew. Chem. Int. Ed. 51 (2012) 8960-9009;
      (i) G.Y. Song, F. Wang, X.W. Li, Chem. Soc. Rev. 41 (2012) 3651-3678;
      (j) J. Wencel-Delord, F. Glorius, Nat. Chem. 5 (2013) 369-375;
      (k) J.R. Hummel, J.A. Boerth, J.A. Ellman, Chem. Rev. 117 (2017) 9163-9227;
      (l) J. Kim, K. Shin, S. Jin, D. Kim, S. Chang, J. Am. Chem. Soc.141 (2019) 4137-4146.

    6. [6]

      (a) J. Ryu, S.H. Cho, S. Chang, Angew. Chem. Int. Ed. 51 (2012) 3677-3681;
      (b) B. Yao, R.J. Song, Y. Liu, et al., Adv. Synth. Catal. 354 (2012) 1890-1896;
      (c) Z.Y. Wu, C. Pi, X.L. Cui, J. Bai, Y.J. Wu, Adv. Synth. Catal. 355 (2013) 1971-1976;
      (d) B. Xiao, Z.J. Liu, L. Liu, Y. Fu, J. Am. Chem. Soc. 135 (2013) 616-619;
      (e) O.V. Larionov, D. Stephens, A. Mfuh, G. Chavez, Org. Lett.16 (2014) 864-869;
      (f) A.K. Jha, N. Jain, Chem. Commun. 52 (2016) 1831-1834;
      (g) S.J. Yu, H.L. Sang, S.Z. Ge, Angew. Chem. Int. Ed. 56 (2017) 15896-15900.

    7. [7]

      (a) K.S.Kanyiva, Y.Nakao, T.Hiyama, Angew.Chem.Int.Ed.46 (2007)8872-8874;
      (b) S.H. Cho, S.J. Hwang, S. Chang, J. Am. Chem. Soc. 130 (2008) 9254-9256;
      (c) J.L. Wu, X.L. Cui, L.M. Chen, G.J. Jiang, Y.J. Wu, J. Am. Chem. Soc. 131 (2009) 13888-13889;
      (d) F. Roudesly, L.F. Veiros, J. Oble, G. Poli, Org. Lett. 20 (2018) 2346-2350.

    8. [8]

      (a) L.C. Campeau, D.R. Stuart, J.P. Leclerc, et al., J. Am. Chem. Soc. 131 (2009) 3291-3306;
      (b) D.B. Zhao, W.H. Wang, F. Yang, et al., Angew. Chem. Int. Ed. 48 (2009) 3296-3300;
      (c) P.H. Xi, F. Yang, S. Qin, et al., J. Am. Chem. Soc. 132 (2010) 1822-1824;
      (d) H. Wang, Y. Pei, J. Bai, et al., RSC Adv. 4 (2014) 26244-26246;
      (e) X.P. Chen, X.L. Cui, F.F. Yang, Y.J. Wu, Org. Lett. 17 (2015) 1445-1448.

    9. [9]

      (a) Z.Y. Wu, H.Y. Song, X.L. Cui, et al., Org. Lett. 15 (2013) 1270-1273;
      (b) B.N. Du, P. Qian, Y. Wang, et al., Org. Lett. 18 (2016) 4144-4147.

    10. [10]

      X. Chen, C.W. Zhu, X.L. Cui, Y.J. Wu, Chem. Commun. 49(2013) 6900-6902.  doi: 10.1039/c3cc43947j

    11. [11]

      H. Wang, X.L. Cui, Y. Pei, et al., Chem. Commun. 50(2014) 14409-14411.  doi: 10.1039/C4CC07060G

    12. [12]

      (a) G. Li, C.Q. Jia, K. Sun, Org. Lett. 15 (2013) 5198-5201;
      (b) C.W. Zhu, M.L. Yi, D.H. Wei, et al., Org. Lett. 16 (2014) 1840-1843;
      (c) W.L. Xie, J.H. Yoon, S. Chang, J. Am. Chem. Soc. 138 (2016) 12605-12614.

    13. [13]

      B. Yao, C.L. Deng, Y. Liu, et al., Chem. Commun. 51(2015) 4097-4100.  doi: 10.1039/C4CC10140E

    14. [14]

      (a) J. Kwak, M. Kim, S. Chang, J. Am. Chem. Soc. 133 (2011) 3780-3783;
      (b) H.Hwang, J.Kim, J.Jeong, S.Chang, J.Am.Chem.Soc.136 (2014)10770-10776;
      (c) X.T. Zhang, Z.S. Qi, X.W. Li, Angew. Chem. Int. Ed. 53 (2014) 10794-10798;
      (d) J. Jeong, P. Patel, H. Hwang, S. Chang, Org. Lett. 16 (2014) 4598-4601;
      (e) T. Shibata, Y. Matsuo, Adv. Synth. Catal. 356 (2014) 1516-1520;
      (f) U. Sharma, Y. Park, S. Chang, J. Org. Chem. 79 (2014) 9899-9906;
      (g) S. Konishi, S. Kawamorita, T. Iwai, et al., Chem. Asian J. 9 (2014) 434-438;
      (h) Y. Park, K.T. Park, J.G. Kim, S. Chang, J. Am. Chem. Soc.137 (2015) 4534-4542;
      (i) K. Shin, S.W. Park, S. Chang, J. Am. Chem. Soc. 137 (2015) 8584-8592;
      (j) D.E. Stephens, J. Lakey-Beitia, A.C. Atesin, et al., ACS Catal. 5 (2015) 167-175;
      (k) D.E. Stephens, J. Lakey-Beitia, G. Chavez, et al., Chem. Commun. 51 (2015) 9507-9510;
      (l) D. Gwon, H. Hwang, H.K. Kim, S.R. Marder, S. Chang, Chem. Eur. J. 21 (2015) 17200-17204;
      (m)R.Sharma, R.Kumar, I.Kumar, U.Sharma, Eur.J.Org.Chem.2015 (2015)7519-7528;
      (n) X.H. Hu, X.F. Yang, T.P. Loh, ACS Catal. 6 (2016) 5930-5934;
      (o) N. Barsu, M. Sen, J.R. Premkumar, B. Sundararaju, Chem. Commun. 52 (2016) 1338-1341;
      (p) X.P. Chen, X.L. Cui, Y. Wu, J. Org. Lett. 18 (2016) 2411-2414;
      (q) X.P. Chen, X.L. Cui, Y.J. Wu, Org. Lett. 18 (2016) 3722-3725;
      (r) D. Kalsi, R.A. Laskar, N. Barsu, J.R. Premkumar, B. Sundararaju, Org. Lett. 18 (2016) 4198-4201;
      (s) R. Sharma, I. Kumar, R. Kumar, U. Sharma, Adv. Synth. Catal. 359 (2017) 3022-3028;
      (t) B. Wang, C.P. Li, H. Liu, Adv. Synth. Catal. 359 (2017) 3029-3034;
      (u) C. You, C. Pi, Y.J. Wu, X.L. Cui, Adv. Synth. Catal. 360 (2018) 4068-4072;
      (v) R. Sharma, R. Kumar, U. Sharma, J. Org. Chem. 84 (2019) 2786-2797;
      (w) B. Ghosh, A. Biswas, S. Chakraborty, R. Samanta, Chem. Asian J. 13 (2018) 2388-2392;
      (x) C. You, T.T. Yuan, Y.Z. Huang, et al., Org. Biomol. Chem.16 (2018) 4728-4733.

    15. [15]

      (a) J. Kim, S. Kim, D. Kim, S. Chang, J. Org. Chem. 84 (2019) 13150-13158;
      (b) Z.H. Zhang, C. Pi, H. Tong, X.L. Cui, Y.J. Wu, Org. Lett. 19 (2017) 440-443.

    16. [16]

      K. Konno, K. Hashimoto, H. Shirahama, T. Matsumoto, Heterocycles 24(1986) 2169-2172.  doi: 10.3987/R-1986-08-2169

    17. [17]

      D. Wenkert, R.B. Woodward, J. Org. Chem. 48(1983) 283-289.  doi: 10.1021/jo00151a001

    18. [18]

      X.M. Wang, D.G. Yu, F. Glorius, Angew. Chem. Int. Ed. 54(2015) 10280-10283.  doi: 10.1002/anie.201503888

  • 加载中
    1. [1]

      Qiuyun LiYannan ZhuYining WangGang QiWen-Juan HaoKelu YanBo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Wen-Jing LiJun-Bo WangYu-Heng LiuMo ZhangZhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    6. [6]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    7. [7]

      Xiang HuangDongzhen XuYang LiuXia HuangYangfan WuDongmei FangBing XiaWei JiaoJian LiaoMin Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665

    8. [8]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    9. [9]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    10. [10]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    11. [11]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    12. [12]

      Chen LiZiyuan ZhaoShouyun Yu . Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides. Chinese Chemical Letters, 2024, 35(6): 109128-. doi: 10.1016/j.cclet.2023.109128

    13. [13]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    14. [14]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    15. [15]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    16. [16]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    17. [17]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    18. [18]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    19. [19]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    20. [20]

      Jing LIANGQian WANGJunfeng BAI . Synthesis and structures of cdq-topological quaternary and (4, 4, 8)-c topological quinary Zn-MOFs with both oxalic acid and triazole ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2186-2192. doi: 10.11862/CJIC.20240177

Metrics
  • PDF Downloads(23)
  • Abstract views(1130)
  • HTML views(88)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return