Citation: Lv Shuaipeng, Sun Yunfang, Xu Yue, Yang Shihai, Wang Lei. Lewis base catalyzed ring-expansion of isatin with 2, 2, 2-trifluorodiazoethane (CF3CHN2): An efficient route to 3-hydroxy-4-(trifluoromethyl)quinolinones[J]. Chinese Chemical Letters, ;2020, 31(6): 1568-1571. doi: 10.1016/j.cclet.2019.11.027 shu

Lewis base catalyzed ring-expansion of isatin with 2, 2, 2-trifluorodiazoethane (CF3CHN2): An efficient route to 3-hydroxy-4-(trifluoromethyl)quinolinones

    * Corresponding authors.
    E-mail addresses: siquan@163.com (S. Yang), lwang@implad.ac.cn (L. Wang).
  • Received Date: 14 September 2019
    Revised Date: 11 November 2019
    Accepted Date: 18 November 2019
    Available Online: 20 November 2019

Figures(6)

  • A Lewis base catalyzed ring expansion of isatin with 2, 2, 2-trifluorodiazoethane (CF3CHN2) is developed. It is characterized that the merge of tetramethylethylenediamine and CF3CHN2 generates reactive triazene intermediates, which construct substituted 3-hydroxy-4-(trifluoromethyl)quinolinones with high efficiency. Synthetic application of the procedure is broadened by 3-trifluormethylpyrazole fused 3-hydroxy-4-(trifluoromethyl)quinolinone synthesis.
  • 加载中
    1. [1]

      (a) S.Y. Sit, F.J. Ehrgott, J. Gao, N.A. Meanwell, Bioorg. Med. Chem. Lett. 6 (1996) 499-504;
      (b) A.Heguy, P.Cai, P.Meyn, etal., AntiviralChem.Chemother.9 (1998)149-155;
      (c) Y. Aoki, M. Ishiwara, A. Koda, H. Takagaki, Eur. J. Pharmacol. 409 (2000) 325-330;
      (d)P.R.Angibaud, M.G.Venet, W.Filliers, etal., Eur.J.Org.Chem.3 (2004)479-486;
      (e) S. Grabley, J. Cai, M. Meiners, et al., J. Nat. Prod. 68 (2005) 1397-1399;
      (f) P. Cheng, Q. Zhang, Y.B. Ma, et al., Bioorg. Med. Chem. Lett. 18 (2008) 3787-3789;
      (g) A. Maiti, P. Reddy, M. Sturdy, et al., J. Med. Chem. 52 (2009) 1873-1884;
      (h) A.J. Duplantier, S.L. Becker, M.J. Bohanon, et al., J. Med. Chem. 52 (2009) 3576-3585;
      (i) V. Suchaud, F. Bailly, C. Lion, et al., Bioorg. Med. Chem. Lett. 22 (2012) 3988-3992;
      (j) Y.C. Yuan, R. Yang, D. Zhang-Negrerie, et al., J. Org. Chem. 78 (2013) 5385-5392.

    2. [2]

      (a) V. Pliska, B. Testa, H. Waterbeemd, Lipophilicity in Drug Action and Toxicology, Wiley-VCH, Weinheim, 2008;
      (b) O. Lefebvre, M. Marull, M. Schlosser, Eur. J. Org. Chem. (2003) 2115-2121;
      (c) M. Marull, O. Lefebvre, M. Schlosser, Eur. J. Org. Chem. (2004) 54-63.

    3. [3]

      (a) F. Leroux, O. Lefebvre, M. Schlosser, Eur. J. Org. Chem. (2006) 3147-3151;
      (b) M. Marull, M. Schlosser, Eur. J. Org. Chem. 2003 (2003) 1576-1588;
      (c) D.O. Berbasov, V.A. Soloshonok, Synthesis 13 (2003) 2005-2010.

    4. [4]

      (a) P.K. Mykhailiuk, S. Afonin, G.V. Palamarchuk, et al., Angew. Chem. Int. Ed. 47 (2008) 5765-5767;
      (b) B. Morandi, E.M. Carreira, Angew. Chem. Int. Ed. 49 (2010) 938-941;
      (c) B. Morandi, E.M. Carreira, Angew. Chem. Int. Ed. 49 (2010) 4294-4296;
      (d) B. Morandi, B. Mariampillai, E.M. Carreira, Angew. Chem. Int. Ed. 50 (2011) 1101-1104;
      (e) C.B. Liu, W. Meng, F. Li, et al., Angew. Chem. Int. Ed. 51 (2012) 6227-6230;
      (f) O.A. Argintaru, D. Ryu, I. Aron, G.A. Molander, Angew. Chem. Int. Ed. 52 (2013) 13656-13660;
      (g) G.A. Molander, D. Ryu, Angew. Chem. Int. Ed. 53 (2014) 14181-14185;
      (h) R. Guo, Y. Zheng, J.A. Ma, Org. Lett. 18 (2016) 4170-4173;
      (i) H. Luo, G. Wu, Y. Zhang, J. Wang, Angew. Chem. Int. Ed. 54 (2015) 14503-14507;
      (j) S. Hyde, J. Veliks, B. Liégault, et al., Angew. Chem. Int. Ed. 55 (2016) 3785-3789;
      (k) A.V. Arkhipov, V.V. Arkhipov, J. Cossy, V.O. Kovtunenko, P.K. Mykhailiuk, Org. Lett. 18 (2016) 3406-3409;
      (l) A. Tinoco, V. Steck, V. Tyagi, R. Fasan, et al., J. Am. Chem. Soc. 139 (2017) 5293-5296;
      (m) Z. Chen, Y. Zheng, J.A. Ma, Angew. Chem. Int. Ed. 56 (2017) 4569-4574;
      (n) X.Y. Zhang, Z.H. Liu, X.Y. Yang, et al., Nat. Commun. 10 (2019) 284;
      (o) Z.F. Wang, A.G. Herraiz, A.M. del Hoyo, M.G. Suero, Nature 554 (2018) 86-91.

    5. [5]

      B. Morandi, J. Cheang, E.M. Carreira, Org. Lett. 13(2011) 3080-3081.  doi: 10.1021/ol200983s

    6. [6]

      S. Li, W.J. Cao, J.A. Ma, Synlett 28(2017) 673-678.

    7. [7]

      O.S. Artamonov, E.Y. Slobodyanyuk, D.M. Volochnyuk, et al., Eur. J. Org. Chem. (2014) 3592-3598.  doi: 10.1002/ejoc.201402158

    8. [8]

      (a) O. Artamonov, P. Mykhailiuk, N. Voievoda, D. Volochnyuk, I. Komarov, Synthesis 3 (2010) 443-446;
      (b) D. Gladow, H.U. Reissig, Helv. Chim. Acta 95 (2012) 1818-1830.

    9. [9]

      M. Kotozaki, S. Chanthamath, T. Fujii, K. Shibatomi, S. Iwasa, Chem. Commun. 54(2018) 5110-5113.  doi: 10.1039/C8CC02286K

    10. [10]

      A. Tinoco, V. Steck, V. Tyagi, R. Fasan, J. Am. Chem. Soc.139(2017) 5293-5296.  doi: 10.1021/jacs.7b00768

    11. [11]

      (a) F. Li, J. Nie, L. Sun, Y. Zheng, J.A. Ma, Angew. Chem. Int. Ed. 52 (2013) 6255-6258;
      (b) S. Wang, L.J. Yang, J.L. Zeng, Y. Zheng, J.A. Ma, Org. Chem. Front. 2 (2015) 1468-1474;
      (c) J. Britton, T.F. Jamison, Angew. Chem. Int. Ed. 56 (2017) 8823-8827;
      (d) Z. Chen, S.Q. Fan, Y. Zheng, J.A. Ma, Chem. Commun. 51 (2015) 16545-16548.

    12. [12]

      A. Gioiello, F. Venturoni, M. Marinozzi, B. Natalini, R. Pellicciari, J. Org. Chem. 76(2011) 7431-7437.  doi: 10.1021/jo201205u

    13. [13]

      R. Paterna, V. André, M.T. Duarte, et al., Eur. J. Org. Chem. 2013(2013) 6280-6290.  doi: 10.1002/ejoc.201300796

    14. [14]

      Y. Tangella, K.L. Manasa, N.H. Krishna, Org. Lett. 20(2018) 3639-3642.  doi: 10.1021/acs.orglett.8b01417

    15. [15]

      S. Lv, H. Zhou, X. Yu, et al., Commun. Chem. 2(2019) 69.  doi: 10.1038/s42004-019-0168-6

  • 加载中
    1. [1]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    2. [2]

      Xinyu TianJiaxiang GuoZeyi LiShihou ShengTianyu ZhangXianfei LiChuandong Dou . Control over electronic structures of organic diradicaloids via precise B/O-heterocycle fusion. Chinese Chemical Letters, 2025, 36(1): 110174-. doi: 10.1016/j.cclet.2024.110174

    3. [3]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    4. [4]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    5. [5]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    6. [6]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    7. [7]

      Pengfei LiChulin QuFan WuHu GaoChengyan ZhaoYue ZhaoZhen Shen . Robust free-base and metalated corrole radicals with reduction-induced emission. Chinese Chemical Letters, 2025, 36(2): 110292-. doi: 10.1016/j.cclet.2024.110292

    8. [8]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    9. [9]

      Mianfeng LiHaozhi WangZijun YangZexiang YinYuan LiuYingmei BianYang WangXuerong ZhengYida Deng . Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni-Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chinese Chemical Letters, 2025, 36(3): 110199-. doi: 10.1016/j.cclet.2024.110199

    10. [10]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    11. [11]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    12. [12]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    13. [13]

      Shuai Liang Wen-Jing Jiang Ji-Xiang Hu . Achieving colossal anisotropic thermal expansion via synergism of spin crossover and rhombus deformation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100430-100430. doi: 10.1016/j.cjsc.2024.100430

    14. [14]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    15. [15]

      Wenling YuanFengli LiZhe ChenQiaoxin XuZhenhua GuanNanyu YaoZhengxi HuJunjun LiuYuan ZhouYing YeYonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788

    16. [16]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    17. [17]

      Qiuyun LiYannan ZhuYining WangGang QiWen-Juan HaoKelu YanBo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494

    18. [18]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    19. [19]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    20. [20]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

Metrics
  • PDF Downloads(8)
  • Abstract views(1180)
  • HTML views(79)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return