Citation: Wang Kefeng, Zhuang Zixi, Ti Huihui, Wu Peishan, Zhao Xin, Wang Honggen. Et2Zn-promoted β-trans-selective hydroboration of ynamide[J]. Chinese Chemical Letters, ;2020, 31(6): 1564-1567. doi: 10.1016/j.cclet.2019.11.008 shu

Et2Zn-promoted β-trans-selective hydroboration of ynamide

    * Corresponding authors.
    E-mail addresses: tihuihui@126.com (H. Ti) 13500032980@139.com (P. Wu) wanghg3@mail.sysu.edu.cn (H. Wang).
    1 These authors contributed equally to this work.
  • Received Date: 7 October 2019
    Revised Date: 23 October 2019
    Accepted Date: 23 October 2019
    Available Online: 1 June 2020

Figures(4)

  • The trans-hydroboration of alkyne represents a challenging task in organic synthesis. Reported herein is an Et2Zn promoted β-trans hydroboration of ynamides by using N-heterocyclic carbene (NHC)-ligated borane as boryl source. The reaction leads to a stereoselective construction of enamides bearing a valuable boryl substituent. Both aromatic and aliphatic ynamides were applicable to the reaction. Synthetic transformation of the C—B bond in the product via Suzuki-Miyaura coupling provides a simple and stereospecific route to multi-substituted enamides. Mechanistic studies were conducted and the possible mechanism was discussed
  • 加载中
    1. [1]

      (a) H.C. Brown, Organic Syntheses Via Boranes, Wiley, New York, 1975;
      (b) A. Pelter, K. Smith, H.C. Brown, Borane Reagents, Academic Press, New York, 1988;
      (c) M. Vaulter, G. Alcaraz, Science of Synthesis, Vinylboranes, Georg Thieme, (2014);
      (d) J. Chen, J. Guo, Lu Z, Chin. J. Chem. 36 (2018) 1075-1109.

    2. [2]

      (a) T. Ohmura, Y. Yamamoto, N. Miyaura, J. Am. Chem. Soc. 122 (2000) 4990-4991;
      (b) C. Gunanathan, M. Hçlscher, F. Pan, W. Leitner, J. Am. Chem. Soc. 134 (2012) 14349-14352;
      (c) B. Sundararaju, A. Fgrstner, Angew. Chem. Int. Ed. 52 (2013) 14050-14054;
      (d) B. Sundararaju, A. Fgrstner, Angew. Chem. 125 (2013) 14300-14304;
      (e) Q. Wang, S.E. Motika, N.G. Akhmedov, J.L. Petersen, X. Shi, Angew. Chem. Int. Ed 53 (2014) 5418â€"5422;
      (f) Q. Wang, S.E. Motika, N.G. Akhmedov, J.L. Petersen, X. Shi, Angew. Chem.126 (2014) 5522-5526;
      (g) J.V. Obligacion, J.M. Neely, A.N. Yazdani, I. Pappas, P.J. Chirik, J. Am. Chem. Soc. 137 (2015) 5855-5858;
      (h) W.J. Jang, W.L. Lee, J.H. Moon, J.Y. Lee, J. Yun, Org. Lett.18 (2016) 1390-1393;
      (i) S. Xu, Y. Zhang, B. Li, S.Y. Liu, J. Am. Chem. Soc. 138 (2016) 14566-14569;
      (j) N. Gorgas, L.G. Alves, B. Stçger, et al., J. Am. Chem. Soc. 139 (2017) 8130-8133;
      (k) K. Yuan, N. Suzuki, S.K. Mellerup, et al., Org. Lett. 18 (2016) 720-723;
      (l) K. Nagao, A. Yamazaki, H. Ohmiya, M. Sawamura, Org. Lett. 20 (2018) 1861-1865;
      (m) J. Guo, B. Cheng, X. Shen, Z. Lu, J. Am. Chem. Soc. 139 (2017) 15316-15319.

    3. [3]

      (a) K.A. DeKorver, H. Li, A.G. Lohse, et al., Chem. Rev. 110 (2010) 5064-5106;
      (b) G. Evano, A. Coste, K. Jouvin, Angew. Chem. Int. Ed. 49 (2010) 2840-2859;
      (c) P. Lu, Y. Wang, Chem. Soc. Rev. 41 (2012) 5687-5705;
      (d) X.N. Wang, H.S. Yeom, L.C. Fang, et al., Acc. Chem. Res. 47 (2014) 560-578;
      (e) A.M. Cook, C. Wolf, Tetrahedron Lett. 56 (2015) 2377-2392;
      (f) F. Pan, C. Shu, L.W. Ye, Org. Biomol. Chem. 14 (2016) 9456-9465;
      (g) X. Li, Y. Sun, L. Zhang, B. Peng, Chin. J. Org. Chem. 36 (2016) 2530-2544;
      (h) G. Duret, V. Le Fouler, P. Bisseret, V. Bizet, N.E. Blanchard, Eur. J. Org. Chem. 46 (2017) 6816-6830;
      (i) G. Evano, M. Lecomte, P. Thilmany, C. Theunissen, Synthesis 49 (2017) 3183-3214.

    4. [4]

      (a) X.L. Han, C.J. Zhou, X.G. Liu, et al., Org. Lett. 19 (2017) 6108-6111;
      (b) J. Li, E. Lin, X.L. Han, Q. Li, H. Wang, Org. Lett. 21 (2019) 4255-4258;
      (c) P.P. Lin, X.L. Han, G.H. Ye, et al., J. Org. Chem. 84 (2019) 12966-12974.

    5. [5]

      B. Witulski, N. Buschmann, U. Bergsträßer, Tetrahedron 56(2000) 8473-8480.  doi: 10.1016/S0040-4020(00)00773-0

    6. [6]

      R.W. Hoffmann, D. Brücknera, New J. Chem. 25(2001) 369-373.  doi: 10.1039/b009259m

    7. [7]

      Y. Bai, F. Zhang, J. Shen, F. Luo, G. Zhu, Asian J. Org. Chem. 4(2015) 626-629.  doi: 10.1002/ajoc.201500119

    8. [8]

      G. He, S. Chen, Q. Wang, et al., Org. Biomol. Chem. 12(2014) 5945-5953.  doi: 10.1039/C4OB00979G

    9. [9]

      J.M. Yang, Z.Q. Li, S.F. Zhu, Chin. J. Org. Chem. 37(2017) 2481-2497.

    10. [10]

      (a) D.P. Curran, A. Solovyev, M.M. Brahmi, Angew. Chem. Int. Ed. 50 (2011) 10294-10317;
      (b) T. Taniguchi, Eur. J. Org. Chem. 37 (2019) 6308-6319;
      (c) M. Shimoi, T. Watanabe, K. Maeda, D.P. Curran, T. Taniguchi, Angew. Chem., Int. Ed. 57 (2018) 9485-9490;
      (d) W. Dai, S.J. Geib, D.P. Curran, J. Am. Chem. Soc. 141 (2019) 12355-12361;
      (e) T. Watanabe, D. Hirose, D.P. Curran, T. Taniguchi, Chem. -Eur. J. 23 (2017) 5404-5409;
      (f) J. Qi, F.L. Zhang, Y.S. Huang, et al., Org. Lett. 20 (2018) 2360-2364;
      (g) S.C. Ren, F.L. Zhang, J. Qi, et al., J. Am. Chem. Soc. 139 (2017) 6050-6053;
      (h) J.K. Jin, F.L. Zhang, Q. Zhao, J.A. Lu, Y.F. Wang, Org. Lett. 20 (2018) 7558-7562;
      (i) M. Shimoi, K. Maeda, S.J. Geib, D.P. Curran, T. Taniguchi, Angew. Chem. Int. Ed. 58 (2019) 6357-6361;
      (j) S.C. Ren, F.L. Zhang, A.Q. Xu, et al., Nat. Commun. 10 (2019) 1934;
      (k) J.K. Jin, W.X. Zheng, H.M. Xia, F.L. Zhang, Y.F. Wang, Org. Lett. 21 (2019) 8414-8418;
      (l) X. Liu, E. Lin, G. Chen, et al., Org. Lett. 21 (2019) 8454-8458.

    11. [11]

      (a) E. Romain, C. Fopp, F. Chemla, et al., Angew. Chem. Int. Ed. 53 (2014) 11333-11337;
      (b) K. Vega-Hernandez, E. Romain, A. Coffinet, et al., J. Am. Chem. Soc. 140 (2018) 17632-17642.

    12. [12]

      (a) X. Pan, E. LacoÌ, te, J. Lalevee, D.P. Curran, J. Am. Chem. Soc.134 (2012) 5669-5674;
      (b) C. Chatgilialoglu, Chem. -Eur. J. 14 (2008) 2310-2320.

    13. [13]

      (a) X. Pan, A. Boussonnière, D.P. Curran, J. Am. Chem. Soc. 135 (2013) 14433-14437;
      (b) J.E. Radcliffe, V. Fasano, R.W. Adams, P. Youa, M.J. Ingleson, Chem. Sci. 10 (2019) 1434-1441.

    14. [14]

      (a) T.S. De Vries, A. Prokofjevs, E. Vedejs, Chem. Rev. 112 (2012) 4246-4282;
      (b) A. Solovyev, S.J. Geib, E. LacoÌ, te, D.P. Curran, Organometallics 31 (2012) 54-

  • 加载中
    1. [1]

      Ying-Wei Zhao Qiang Feng Qiu-Ling Song . Copper-catalyzed decarboxylative hydroboration of phenylpropiolic acids under ligand-free or both ligand- and base-free conditions. Chinese Chemical Letters, 2016, 27(4): 571-574.

    2. [2]

      Jiang ChunYu Piao-PiaoZhang QingXu Hua-DongShen Mei-Hua . One-pot synthesis of tetrahydroindoles via a copper catalyzed N-alkynation/[4+2] cycloaddition cascade. Chinese Chemical Letters, 2019, 30(1): 266-268. doi: 10.1016/j.cclet.2018.05.040

    3. [3]

      Liu JianguoZhang AilingSong HengTong QingxiaoTung Chen-HoWang Wenguang . Iron(Ⅱ) hydrides bearing a tetradentate PSNP ligand. Chinese Chemical Letters, 2018, 29(6): 949-953. doi: 10.1016/j.cclet.2017.09.059

    4. [4]

      Cai HanOuyang KunbingYang Nianfa . Application of Chiral 1, 1'-Bi-2-naphthol Polymers in Asymmetric Epoxidation of (E)-α, β-Unsaturated Aryl Ketones. Chinese Journal of Organic Chemistry, 2019, 39(5): 1456-1459. doi: 10.6023/cjoc201810029

    5. [5]

      Liu ZhouYi JiuyinZhang YingTao ChuanzhouZhang ZhichengShi NinghuanCheng Qingfang . (NHC)CuCl-Catalyzed Hydroboration of Symmetric Internal Alkynes. Chemistry, 2018, 81(5): 476-479.

    6. [6]

      Mansour Nawasreh . Chemo-and regioselective hydroboration of △14,15 in certain cephalostatin analogue. Chinese Chemical Letters, 2008, 19(12): 1391-1394. doi: 10.1016/j.cclet.2008.09.055

    7. [7]

      Xia-Fei XuYan XiongXue-Ge LingXi-Mi XieJie YuanShu-Ting ZhangZhong-Rong Song . A practical synthesis of bis(indolyl)methanes catalyzed by BF3·Et2O. Chinese Chemical Letters, 2014, 25(3): 406-410. doi: 10.1016/j.cclet.2013.11.038

    8. [8]

      Qian CHENG Takayuki ORITANI Tohru HORIGUCHI . Et2AlCl-Mediated Reaction of α-4(20)-Epoxy-5α-hydroxy Taxinine B. Chinese Chemical Letters, 2000, 11(3): 199-202.

    9. [9]

      De Liang LONG Xin Quan XIN Bao Sheng LUO Liao Rong CHEN Kai Bei YU . CRYSTAL STRUCTURE OF (Et4N)2Pd(i-MNT)2 AND ITS REACTION WITH (Et4N)2WS4 (i-MNT=S2CC(CN)22-). Chinese Chemical Letters, 1995, 6(10): 899-902.

    10. [10]

      Zhi LIU Qi FANG Wen Tao YU Guo Qun LIU Wen XU Min Hua JIANG Bin ZHANG Dao Ben ZHU . The Inorganic-free Organic Conductor α'-(ET)2C6H4(SO3)2:Its Synthesis, Structure, and Conductivity. Chinese Chemical Letters, 2002, 13(8): 725-728.

    11. [11]

      YUAN Wei-GuanTANG WeiZHANG Hong-LingZHAO BoXIONG FangJING Lin-HaiQIN Da-Bin . Two Amine-tethered Imidazolium NHC Ni(Ⅱ) Complexes: Synthesis, Structure and Catalytic Activity. Chinese Journal of Structural Chemistry, 2014, 33(3): 325-332.

    12. [12]

      Dong-Hai YuJing-Na ShaoRong-Xing HeMing Li . Mechanism of trifl uoromethylation reactions with well-defi ned NHC copper trifl uoromethyl complexes and iodobenzene: A computational exploration. Chinese Chemical Letters, 2015, 26(5): 564-566. doi: 10.1016/j.cclet.2014.12.017

    13. [13]

      Li ShaYang WenhanLuo XianYao Changsheng . An Efficient N-Heterocyclic Carbene (NHC)-Catalyzed Synthesis of Polysubstituted Cyclopentene. Chinese Journal of Organic Chemistry, 2019, 39(5): 1404-1410. doi: 10.6023/cjoc201812035

    14. [14]

      Chen WenweiChen QiMa YingjieLeng XuebingBai Sheng-DiDeng Liang . Formal Co(0), Fe(0), and Mn(0) complexes with NHC and styrene ligation. Chinese Chemical Letters, 2020, 31(5): 1342-1344. doi: 10.1016/j.cclet.2019.11.019

    15. [15]

      Jiao Bao-JuanZhu LiYang Xu-WuChen San-PingGao Sheng-LiShi Qi-Zhen . Thermochemistry of the Ternary Complex Tb(Et2dtc)3(phen). Acta Physico-Chimica Sinica, 2004, 20(07): 767-771. doi: 10.3866/PKU.WHXB20040721

    16. [16]

      ZHU LiYANG Xu-WuJIAO Bao-JuanSHUAI QiGAO Sheng-LiSHI Qi-Zhen . Thermochemical Properties of Ternary Complex Er(Et2dtc)3(phen). Chinese Journal of Applied Chemistry, 2004, 21(12): 1211-1216.

    17. [17]

      Li HongqiWang AiqinSong YanxiTan GanzuYao ZhongqiYu Xianda . Synthesis and Characterization of Organometallic Complexes(Et4N)m·M(dmit)2. Chinese Journal of Applied Chemistry, 1996, 13(6): 75-77.

    18. [18]

      Shu Jia LI Heng Bin ZHANG Shu Yun NIU Guang Di YANG Fu NIE . SYNTHESIS AND STRUCTURE OF A MIXED-VALENCE HEXAMOLYBDENUM COMPLEX [Et4N]2[Mo6O19H4]. Chinese Chemical Letters, 1992, 3(6): 459-462.

    19. [19]

      CHEN Jian-MinLU Zhang-HuiXIONG Li-Hua . Hydrolysis of Ammonia Borane by Ru/Ce(OH)CO3 Nanocomposites for Hydrogen Production. Chinese Journal of Inorganic Chemistry, 2016, 32(10): 1816-1824. doi: 10.11862/CJIC.2016.228

    20. [20]

      Guo Bin SUN Wei Wei PEI Hui WANG Wei Ping YE . Convenient Asymmetric Borane Reduction of Ketones Catalyzed by Simple Amino Alcohols and Corresponding Amino Acids. Chinese Chemical Letters, 2002, 13(12): 1147-1148.

Metrics
  • PDF Downloads(1)
  • Abstract views(114)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return