Citation: Tan Bingqing, Ye Yinghao, Huang Zeai, Ye Liqun, Ma Minzhi, Zhou Ying. Promotion of photocatalytic steam reforming of methane over Ag0/Ag+-SrTiO3[J]. Chinese Chemical Letters, ;2020, 31(6): 1530-1534. doi: 10.1016/j.cclet.2019.11.007 shu

Promotion of photocatalytic steam reforming of methane over Ag0/Ag+-SrTiO3

    * Corresponding author at:State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu 610500 China.
    E-mail address:yzhou@swpu.edu.cn (Y.Zhou).
  • Received Date: 30 September 2019
    Revised Date: 29 October 2019
    Accepted Date: 29 October 2019
    Available Online: 1 June 2020

Figures(4)

  • Methane (CH4) is not only used as a fuel but also as a promising clean energy source for hydrogen generation. The steam reforming of CH4 (SRM) using photocatalysts can realize the production of syngas (CO + H2) with low energy consumption. In this work, Ag0/Ag+-loaded SrTiO3 nanocomposites were successfully prepared through a photodeposition method. When the loading amount of Ag is 0.5 mol%, the atom ratio of Ag+ to Ag0 was found to be 51:49. In this case, a synergistic effect of Ag0 and Ag+ was observed, in which Ag0 was proposed to improve the adsorption of H2O to produce hydroxyl radicals and enhance the utilization of light energy as well as the separation of charge carriers. Meanwhile, Ag0 was regarded as the reduction reaction site with the function of an electron trapping agent. In addition, Ag+ adsorbed the CH4 molecules and acted as the oxidation reaction sites in the process of photocatalytic SRM to further promote electron-hole separation. As a result, 0.5 mol% Ag-SrTiO3 exhibited enhancement of photocatalytic activity for SRM with the highest CO production rate of 4.3 μmol g-1 h-1, which is ca. 5 times higher than that of pure SrTiO3. This work provides a facile route to fabricate nanocomposite with cocatalyst featuring different functions in promoting photocatalytic activity for SRM.
  • 加载中
    1. [1]

      L. Li, S.Z. Fan, X.Y. Mu, Z.T. Mi, C.J. Li, J. Am. Chem. Soc. 136 (2014) 7793-7796.

    2. [2]

      J.H. Chen, H. Arandiyan, X. Gao, J.H. Li, Catal. Surv. Asia 19 (2015) 140-171.  doi: 10.1007/s10563-015-9191-5

    3. [3]

      X.X. Chen, Y.P. Li, X.Y. Pan, et al., Nat. Commun. 7(2016) 12273.  doi: 10.1038/ncomms12273

    4. [4]

      S. Kirschke, P. Bousquet, P. Ciais, M. Saunois, G. Zeng, Nat. Geosci. 6 (2013) 813-823.  doi: 10.1038/ngeo1955

    5. [5]

      S. Murcia-Lo'pez, K. Villa, T. Andreu, J.R. Morante, ACS Catal. 4(2014) 3013-3019.  doi: 10.1021/cs500821r

    6. [6]

      J.N. Armor, Appl. Catal. A:Gen. 176 (1999) 159-176.  doi: 10.1016/S0926-860X(98)00244-0

    7. [7]

      J.L.G. Fierro, M.A. Pena, J.P. Gomez, Appl. Catal. A:Gen. 144(1996) 7-57.  doi: 10.1016/0926-860X(96)00108-1

    8. [8]

      J.R. Rostrupnielsen, Catal. Today 18 (1993) 305-324.  doi: 10.1016/0920-5861(93)80059-A

    9. [9]

      K. Shimura, H. Yoshida, Catal. Surv. Asia 18 (2014) 24-33.  doi: 10.1007/s10563-014-9165-z

    10. [10]

      A. Amin, A. Abedi, R. Hayes, M. Votsmeier, W. Epling, Appl. Catal. A:Gen. 478 (2014) 91-97.  doi: 10.1016/j.apcata.2014.03.032

    11. [11]

      Y. Shan, Y.Q. Zhong, B.Q. Yu, S.Y. Cai, Y. Zhou, Phys. Chem. Chem. Phys.18 (2016) 20338-20344.  doi: 10.1039/C6CP02561G

    12. [12]

      D. Wang, X.Y. Pan, G.T. Wang, Z.G. Yi, J. Struct. Chem. 37 (2018) 230-241.

    13. [13]

      Y.Z. Cai, X.Y. Pan, Y.P. Li, Z.G. Yi, J. Struct. Chem. 35 (2016) 1328-1338.

    14. [14]

      K. Tamai, K. Murakami, S. Hosokawa, et al., J. Phys. Chem. C 121 (2017) 22854-22861.  doi: 10.1021/acs.jpcc.7b07339

    15. [15]

      R. Abe, H. Takami, N. Murakami, B. Ohtani, J. Am. Chem. Soc. 130 (2008) 7780-7781.  doi: 10.1021/ja800835q

    16. [16]

      H. Yoshida, K. Hirao, J. Nishimoto, et al., J. Phys. Chem. C 112 (2008) 5542-5551.

    17. [17]

      H. Yoshida, S. Kato, K. Hirao, J. Nishimoto, T. Hattori, Chem. Lett. 36 (2007) 430-431.  doi: 10.1246/cl.2007.430

    18. [18]

      S. Delavari, N.A.S. Amin, M. Ghaedi, J. Clean. Prod. 111 (2015) 143-154.

    19. [19]

      J.F. Muir, R.E. Hogan Jr., R.D. Skocypec, R. Buck, Sol. Energy 52 (1990) 467-477.

    20. [20]

      Y. Li, Y. Cai, X. Chen, et al., RSC Adv. 6 (2016) 2760-2767.  doi: 10.1039/C5RA22459D

    21. [21]

      L. Li, G.D. Li, C. Yan, et al., J.S. Chen, Angew. Chem. Int. Ed. 50 (2011) 8299-8303.  doi: 10.1002/anie.201102320

    22. [22]

      X.Y. Pan, X.X. Chen, Z.G. Yi, Phys. Chem. Chem. Phys. 40 (2016) 163-181.

    23. [23]

      K. Shimura, T. Yoshida, H. Yoshida, J. Phys. Chem. C 114 (2010) 11466-11474.  doi: 10.1021/jp1012126

    24. [24]

      K. Shimura, H. Kawai, T. Yoshida, H. Yoshida, Chem. Commun. (Camb.) 47 (2011) 8958-8960.  doi: 10.1039/c1cc12287h

    25. [25]

      K. Shimura, H. Kawai, T. Yoshida, H. Yoshida, ACS Catal. 2 (2012) 2126-2134.  doi: 10.1021/cs2006229

    26. [26]

      K. Shimura, H. Yoshida, Energy Environ. Sci. 3(2010) 615-617.  doi: 10.1039/b922793h

    27. [27]

      K. Shimura, H. Miyanaga, H. Yoshida, Stud. Surf. Sci. Catal. 175 (2010) 85-92.  doi: 10.1016/S0167-2991(10)75011-4

    28. [28]

      K. Shimura, S. Kato, T. Yoshida, et al., J. Phys. Chem. C 114 (2010) 3493-3503.  doi: 10.1021/jp902761x

    29. [29]

      K. Iwashina, A.J.J. Kudo, J. Am. Chem. Soc. 133 (2011) 13272-13275.  doi: 10.1021/ja2050315

    30. [30]

      H.J. Freund, M.W. Roberts, Surf. Sci. Rep. 25 (1996) 225-273.  doi: 10.1016/S0167-5729(96)00007-6

    31. [31]

      R.Y. Zhang, Z.A. Huang, C.G. Li, Y.S. Zuo, Y. Zhou, Appl. Surf. Sci. 475 (2019) 953-960.  doi: 10.1016/j.apsusc.2019.01.050

    32. [32]

      T. Baba, H. Sawada, T. Takahashi, M. Abe, Appl. Catal. A:Gen. 231 (2002) 55-63.  doi: 10.1016/S0926-860X(01)00904-8

    33. [33]

      X.F. Wang, S.F. Li, H.G. Yu, J.G. Yu, S.W. Liu, Chem.Eur. J. 17 (2011) 7777-7780.  doi: 10.1002/chem.201101032

    34. [34]

      W.W. Chen, S. Yu, Y.Q. Zhong, et al., New J. Chem. 42 (2018) 4811-4817.  doi: 10.1039/C8NJ00180D

    35. [35]

      S.Y. Cai, S. Yu, W.C. Wan, W. Wen, Y. Zhou, RSC Adv. 7 (2017) 27397-27404.  doi: 10.1039/C7RA02433A

    36. [36]

      Y.X. Yang, M.G. White, P. Liu, J. Phy. Chem. A 116 (2011) 248-256.

    37. [37]

      J.P. Perdew, K. Burke, M. Ernzerhof, Phy. Rev. Lett. 77 (1996) 3865-3868.  doi: 10.1103/PhysRevLett.77.3865

    38. [38]

      F. Wang, Y.H. Ye, Y.H. Cao, Y. Zhou, Appl. Surf. Sci. 481 (2019) 604-610.  doi: 10.1016/j.apsusc.2019.03.079

    39. [39]

      X.Y. Wu, X.Y. Wang, J. Li, G. Zhang, J. Mater. Chem. A 5 (2017) 23822-23830.  doi: 10.1039/C7TA08061A

    40. [40]

      P. Aprelev, Y. Gu, R. Burtovyy, I. Luzinov, K.G. Kornev, J. Appl. Phys. 118 (2015) 3806-3812.

    41. [41]

      Q. Zhang, Y. Huang, L.F. Xu, et al., ACS Appl. Mater. Interfaces 6 (2016) 4165-4172.

    42. [42]

      Y. Yu, Z.M. Lu, Q. Guo, et al., Chem. Phys. Lett. 692 (2018) 94-101.  doi: 10.1016/j.cplett.2017.12.001

    43. [43]

      B.W. Ma, J.F. Guo, W.L. Dai, K.G. Fan, Appl. Catal. B:Environ. 123-124 (2012) 193-199.

    44. [44]

      S.X.Ouyang, P.Li, H.Xu, et al., ACSAppl.Mater.Interfaces6 (2014)22726-22732.  doi: 10.1021/am506877b

    45. [45]

      Y.X. Yang, W. Guo, Y.N. Guo, et al., J. Hazard. Mater. 271(2014) 150-159.  doi: 10.1016/j.jhazmat.2014.02.023

    46. [46]

      Y.Q. Bi, M.F. Ehsan, Y. Huang, J.R. Jin, T. He, J. CO2 Util. 12 (2015) 43-48.  doi: 10.1016/j.jcou.2015.10.004

    47. [47]

      Q. Zhang, Y. Huang, S.Q. Peng, et al., Appl. Catal. B:Environ. 239(2018) 1-9.  doi: 10.1016/j.apcatb.2018.07.076

    48. [48]

      Z. Zhang, Y. Zhou, S. Yu, M.L. Chen, F. Wang, Mater. Lett. 150 (2015) 97-100.  doi: 10.1016/j.matlet.2015.03.011

    49. [49]

      Y. Zhou, Q. Zhang, Y.H. Lin, et al., Sci. China Chem. 56 (2013) 435-442.  doi: 10.1007/s11426-013-4846-4

    50. [50]

      F. Dong, Q.Y. Li, Y. Zhou, et al., Dalton Trans. 43 (2014) 9468-9480.  doi: 10.1039/C4DT00427B

    51. [51]

      L. Jin, G.Q. Zhu, M. Hojamberdiev, X.C. Luo, P. Liu, Ind. Eng. Chem. Res. 53 (2014) 2127-2134.

    52. [52]

      A. Lebedev, F. Anariba, X. Li, D. Seng Hwee Leng, P. Wu, Sol. Energy 178 (2019) 257-267.  doi: 10.1016/j.solener.2018.12.040

    53. [53]

      F. Chen, H.W. Huang, Y.H. Zhang, T.R. Zhang, Chin. Chem. Lett. 28 (2017) 2244-2250.  doi: 10.1016/j.cclet.2017.09.017

    54. [54]

      L.H. Yu, Y. Shao, D.Z. Li, Appl. Catal. B:Environ. 204 (2017) 216-223.  doi: 10.1016/j.apcatb.2016.11.039

    55. [55]

      K. Villa, S. Murcia-López, T. Andreu, J.R. Morante, Appl. Catal. B:Environ. 163 (2015) 150-155.  doi: 10.1016/j.apcatb.2014.07.055

    56. [56]

      M.A. Gondal, A. Hameed, A. Suwaiyan, Appl. Catal. A:Gen. 243 (2003) 165-174.  doi: 10.1016/S0926-860X(02)00562-8

    57. [57]

      G.R. Bamwenda, T. Uesigi, Y. Abe, K. Sayama, H. Arkawa, Appl. Catal. A:Gen. 205 (2001) 117-128.  doi: 10.1016/S0926-860X(00)00549-4

  • 加载中
    1. [1]

      Ho-Hwan CHUNWan-Kuen JO . Visible-light-responsive carbon-embedded photocatalyst coupled with plug-flow reactor for decomposition of vaporous aromatics. Chinese Journal of Catalysis, 2013, 34(6): 1256-1261. doi: 10.1016/S1872-2067(12)60549-X

    2. [2]

      Yong-Heng ShiYa-Fei XieYu-Qiang LiuQun-Chao WeiWei-Ren XuLi-Da TangGui-Long Zhao . SrCl2 as an efficient cocatalyst for acidic hydrolysis of methyl glycosides. Chinese Chemical Letters, 2014, 25(4): 561-566. doi: 10.1016/j.cclet.2013.11.028

    3. [3]

      Rong Hua ZHENG Yi Feng ZHANG Li Ming JIANG Zhi Quan SHEN . New Catalyst for the Copolymerization of Styrene with Carbon Monoxide. Chinese Chemical Letters, 1998, 9(6): 577-578.

    4. [4]

      Xi Zhen LIU Chang Jun LIU Baldur ELIASSON . Hydrogen Production from Methanol Using Corona Discharges. Chinese Chemical Letters, 2003, 14(6): 631-633.

    5. [5]

      Ming Ya Cai Hui Xia Luo Zhong Li Armin Feldhoff Jiirgen Caro Hai Hui Wang . Preparation and hydrogen permeation properties of BaCe0.95Nd0.0503-δ membranes. Chinese Chemical Letters, 2008, 19(10): 1256-1259. doi: 10.1016/j.cclet.2008.06.054

    6. [6]

      . Hydrogen generation from methanol reforming under unprecedented mild conditions. Chinese Chemical Letters, 2017, 28(7): 1353-1357. doi: 10.1016/j.cclet.2017.03.038

    7. [7]

      Hui WangBi-Li WangShu-Yun Ma . Synthesis of visible-light-driven TiO2 yolk-shell spheres with {0 0 1} facets dominated mesoporous shells. Chinese Chemical Letters, 2013, 24(3): 260-263.

    8. [8]

      Wei ZHANG Yan Ping GUO Li YANG Zhong Li LIU . Photochemically Catalyzed Diels-Alder Reaction of Azadienes with 2,3-Dihydrofuran by 2, 4, 6-Triphenylpyrylium Salt:Synthesis of Styrylfuroquinoline Derivatives. Chinese Chemical Letters, 2005, 16(5): 575-578.

    9. [9]

      Nan Wang Li Hua Zhu Jing Li He Qing Tang . A novel Fe (OH)3/TiO2 nanoparticles and its high photocatalytic activity. Chinese Chemical Letters, 2007, 18(10): 1261-1264. doi: 10.1016/j.cclet.2007.08.020

    10. [10]

      Ji-Min Yang Zhao-Peng Qi Yan-Shang Kang Qing Liu Wei-Yin Sun . Shape-controlled synthesis and photocatalytic activity of In2O3 nanostructures derived from coordination polymer precursors. Chinese Chemical Letters, 2016, 27(4): 492-496.

    11. [11]

      Wang LiangZhu ChengluYin LishaHuang Wei . Construction of Pt-M (M = Co, Ni, Fe)/g-C3N4 Composites for Highly Efficient Photocatalytic H2 Generation. Acta Physico-Chimica Sinica, 2020, 36(7): 1907001-0. doi: 10.3866/PKU.WHXB201907001

    12. [12]

      Xue Ping LI Feng YIN Yuan LIN Jing Bo ZHANG Xu Rui XIAO . Photocatalytic Characterization of TiO2 Supported on Active Carbon. Chinese Chemical Letters, 2001, 12(6): 549-550.

    13. [13]

      Yu FanWang LaichunXing QiujuWang DengkeJiang XunhengLi GuangchaoZheng AnminAi FanrongZou Jian-Ping . Functional groups to modify g-C3N4 for improved photocatalytic activity of hydrogen evolution from water splitting. Chinese Chemical Letters, 2020, 31(6): 1648-1653. doi: 10.1016/j.cclet.2019.08.020

    14. [14]

      Vasko IdakievDimitar DimitrovTatyana TabakovaKrasimir IvanovZhong-Yong YuanBao-Lian Su . Catalytic abatement of CO and volatile organic compounds in waste gases by gold catalysts supported on ceria-modified mesoporous titania and zirconia. Chinese Journal of Catalysis, 2015, 36(4): 579-587. doi: 10.1016/S1872-2067(14)60283-7

    15. [15]

      Ge JianhuaZhang LongXu JingLiu YujieJiang DaochuanDu Pingwu . Nitrogen photofixation on holey g-C3N4 nanosheets with carbon vacancies under visible-light irradiation. Chinese Chemical Letters, 2020, 31(3): 792-796. doi: 10.1016/j.cclet.2019.05.030

    16. [16]

      Rong Shun ZHU Jian Hua HUANG Ke Li HAN Guo Zhong HE . Ab Initio Study of the Reaction: H + SO2→HO + SO. Chinese Chemical Letters, 1998, 9(2): 181-185.

    17. [17]

      Przemysław Jan GodowskiJens Onsgaard . Low temperature adsorption of CO on modified, vicinal Cu(100) surfaces:A comparative study. Chinese Journal of Catalysis, 2014, 35(2): 255-259. doi: 10.1016/S1872-2067(12)60747-5

    18. [18]

      Kefayat UllahYoung-Hee KimByung-Eui LeeSun-Bok JoLei ZhuShu YeWon-Chun Oha . Visible light induced catalytic properties of CdSe-graphene nanocomposites and study of its bactericidal effect. Chinese Chemical Letters, 2014, 25(6): 941-946. doi: 10.1016/j.cclet.2014.03.050

    19. [19]

      Wan-Kuen JoRajesh J. Tayade . Recent developments in photocatalytic dye degradation upon irradiation with energy-efficient light emitting diodes. Chinese Journal of Catalysis, 2014, 35(11): 1781-1792. doi: 10.1016/S1872-2067(14)60205-9

    20. [20]

      . Research progress of photocatalysis based on highly dispersed titanium in mesoporous SiO2. Chinese Chemical Letters, 2019, 30(4): 853-862. doi: 10.1016/j.cclet.2019.03.020

Metrics
  • PDF Downloads(1)
  • Abstract views(131)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return