Citation: Wang Fang, Feng Huangdi, Li Huiqiong, Miao Teng, Cao Tiantian, Zhang Min. 1D Fe3O4@CuSiO3 composites catalyzed decarboxylative A3-coupling for propargylamine synthesis[J]. Chinese Chemical Letters, ;2020, 31(6): 1558-1563. doi: 10.1016/j.cclet.2019.11.004 shu

1D Fe3O4@CuSiO3 composites catalyzed decarboxylative A3-coupling for propargylamine synthesis

    * Corresponding authors.
    E-mail addresses: hdfeng@sues.edu.cn (H. Feng), zhangmin@sues.edu.cn (M. Zhang).
  • Received Date: 17 September 2019
    Revised Date: 3 November 2019
    Accepted Date: 5 November 2019
    Available Online: 6 November 2019

Figures(6)

  • Highly active and stable magnetic copper catalysts were successfully achieved by magnetic induced Stöber method and subsequent hydrothermal reaction with copper ions in alkaline condition. The high content of Cu2+ as well as the unique structures of hierarchical copper silicate in the as-prepared catalysts endowed their outstanding catalytic performance. Efficient decarboxylative A3-coupling of α-keto acid, amine and alkyne was realized with the low Fe3O4@CuSiO3 loading. A range of propargylamines were produced in good to excellent yields under solvent-free condition. Moreover, the catalyst can be easily separated from the final organic product with an external magnet. Also, this kind of catalyst could be recycled up to six times while maintaining its activity.
  • 加载中
    1. [1]

      (a) J.J. Chen, D.M. Swope, J. Clin. Pharmacol. 45 (2005) 878-894;
      (b) M. Baranyi, P.F. Porceddu, F. Gölöncse'r, et al., Mol. Neurodegener.11 (2016) 1-21;
      (c) I. Bolea, A. Gella, M. Unzeta, J. Neural Transm. 120 (2013) 893-902;
      (d) F.T. Zindo, J. Joubert, S.F. Malan, Future Med. Chem. 7 (2015) 609-629;
      (e) K. Lauder, A. Toscani, N. Scalacci, D. Castagnolo, Chem. Rev. 117 (2017) 14091-14200;
      (f) V.A. Peshkov, O.P. Pereshivko, A.A. Nechaev, A.A. Peshkov, E.V. Vander Eycken, Chem. Soc. Rev. 47 (2018) 3861-3898.

    2. [2]

      (a) X.X. Sun, C. Li, Y.Y. He, et al., Adv. Synth. Catal. 359 (2017) 2660-2670;
      (b) Y.M. Wang, H.H. Zhang, C. Li, T. Fan, F. Shi, Chem. Commun. 52 (2016) 1804-1807;
      (c) X.X.Sun, H.H.Zhang, G.H.Li, Y.Y.He, F.Shi, Chem.Eur.J.22 (2016)17526-17532.

    3. [3]

      (a) C. Wei, Z. Li, C.J. Li, Synlett (2004) 1472-1483;
      (b) L. Zani, C. Bolm, Chem. Commun. 38 (2006) 4263-4275;
      (c) V.A. Peshkov, O.P. Pereshivko, E. Van der Eycken, Chem. Soc. Rev. 41 (2012) 3790-3807;
      (d) D. Seidel, Org. Chem. Front. 1 (2014) 426-429.

    4. [4]

      (a) R. Shang, L. Liu, Sci. China Chem. 54 (2011) 1670-1687;
      (b) N. Rodríguez, L.J. Goossen, Chem. Soc. Rev. 40 (2011) 5030-5048;
      (c) J.D.Weaver, A.Recio, A.J.Grenning, J.A.Tunge, Chem.Rev.111(2011)1846-1913;
      (d) J. Schwarz, B. König, Green Chem. 20 (2018) 323-361;
      (e) H.D. Feng, H.H. Jia, Z.H. Sun, Adv. Synth. Catal. 357(2015) 2447-2452;
      (f) H.D. Feng, H.H. Jia, Z.H. Sun, J. Org. Chem. 79 (2014) 11812-17181.

    5. [5]

      (a) F.L. Vaillant, T.J. Courant, Angew. Chem. Int. Ed. 54 (2015) 11200-11204;
      (b) H.Zhang, P.X. Zhang, M.Jiang, H.J.Yang, H.Fu, Org. Lett.19 (2017)1016-1019;
      (c)H.D.Feng, D.S.Ermolat'ev, G.H.Song, E.VanderEycken, J.Org.Chem.76 (2011) 7608-7613;
      (d) P.F. Zhao, H.D. Feng, H.R. Pan, Z.H. Sun, M.C. Tong, Org. Chem. Front. 4 (2017) 37-41.

    6. [6]

      (a) H.P. Bi, L. Zhao, Y.M. Liang, C.J. Li, Angew. Chem. Int. Ed. 48 (2009) 792-795;
      (b) H.P. Bi, Q. Teng, M. Guan, et al., J. Org. Chem. 75 (2010) 783-788;
      (c) D. Chen, P. Huang, Y. Yu, et al., Chem. Commun. 47 (2011) 5801-5803;
      (d) H.D. Feng, D.S. Ermolat'ev, G.H. Song, E. Van der Eycken, J. Org. Chem. 77 (2012) 5149-5154;
      (e) H.D. Feng, D.S. Ermolat'ev, G.H. Song, E. Van der Eycken, Org. Lett.14 (2012) 1942-1945.

    7. [7]

      (a) I. Luz, F.X.L. Xamena, A. Corma, J. Catal. 285 (2012) 285-291;
      (b) G. Bosica, R. Abdilla, J. Mol. Catal. A: Chem. 426 (2017) 542-549;
      (c) A.V. Nakhat, G.D. Yada, Mol. Catal. 451(2018) 209-219.

    8. [8]

      (a) M.J. Aliaga, D.J. Ramón, M. Yus, Org. Biomol. Chem. 8 (2010) 43-46;
      (b) J.Y. Zhang, X. Huang, Q.Y. Shen, J.Y. Wang, G.H. Song, Chin. Chem. Lett. 29 (2018) 197-200.

    9. [9]

      (a) U.C. Rajesh, U. Gulati, D.S. Rawat, ACS Sustainable Chem. Eng. 4 (2016) 3409-3419;
      (b) P. Kaur, B. Kumar, V. Kumar, R. Kumar, Tetrahedron Lett. 59 (2018) 1986-1991;
      (c) U. Gulati, U.C. Rajesh, N. Bunekar, D.S. Rawat, ACS Sustainable Chem. Eng. 5 (2017) 4672-4682;
      (d) U. Gulati, U.C. Rajesh, D.S. Rawat, ACS Sustainable Chem. Eng. 6 (2018) 10039-10051.

    10. [10]

      (a) Y. Li, Y. Lu, C. Zhao, et al., Energy Storage Mater. 7 (2017) 130-151;
      (b) K.M. Kwok, S.W.D. Ong, L. Chen, H.C. Zeng, ACS Appl. Mater. Interface 9 (2017) 37210-37222.

    11. [11]

      M. Srinivas, P. Srinivasu, S.K. Bhargava, M.L. Kantam, Catal. Today 208 (2013) 66-71.  doi: 10.1016/j.cattod.2013.02.006

    12. [12]

      (a) M. Zhang, Y.T. Wang, Y.W. Zhang, et al., Appl. Surf. Sci. 375 (2016) 154-161;
      (b) Y. Zhang, M. Zhang, J. Yang, L.J. Zheng, J.L. Xu, J. Alloys Compd. 695 (2017) 3256-3266;
      (c) M. Zhang, B.Y. Wang, W.Z. Li, W.J. Gan, Dalton Trans. 45 (2016) 922-927;
      (d) M. Zhang, T. Miao, J. Zheng, et al., Microporous Mesoporous Mater. 286 (2019) 207-213.

    13. [13]

      J.W. Liu, J. Cheng, R.C. Che, et al., ACS Appl. Mater. Inter. 5 (2013) 2503-2509.  doi: 10.1021/am3030432

    14. [14]

      J. Choi, J. Lim, F.M. Irudayanathan, et al., Asian J. Org. Chem. 5 (2016) 770-777.  doi: 10.1002/ajoc.201600109

  • 加载中
    1. [1]

      Wen-Jing LiJun-Bo WangYu-Heng LiuMo ZhangZhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001

    2. [2]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    3. [3]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    4. [4]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332

    5. [5]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    6. [6]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    7. [7]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    8. [8]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    9. [9]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    10. [10]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    11. [11]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    12. [12]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    13. [13]

      Zhenkang AiHui ChenXuebin Liao . Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes. Chinese Chemical Letters, 2025, 36(3): 109954-. doi: 10.1016/j.cclet.2024.109954

    14. [14]

      Zhao-Bo HuLing-Ao GuiLong-He LiTong-Tong XiaoAdam T. HandPagnareach TinMykhaylo OzerovYan PengZhongwen OuyangZhenxing WangZi-Ling XueYou Song . Co single-ion magnet and its multi-dimensional aggregations: Influence of the structural rigidity on magnetic relaxation process. Chinese Chemical Letters, 2025, 36(2): 109600-. doi: 10.1016/j.cclet.2024.109600

    15. [15]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    16. [16]

      Yiwen XuChaozheng HeChenxu ZhaoLing Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797

    17. [17]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    18. [18]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    19. [19]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    20. [20]

      Lin Zhang Chaoran Li Thongthai Witoon Xingda An Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456

Metrics
  • PDF Downloads(18)
  • Abstract views(1265)
  • HTML views(95)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return