Citation: Wang Fang, Feng Huangdi, Li Huiqiong, Miao Teng, Cao Tiantian, Zhang Min. 1D Fe3O4@CuSiO3 composites catalyzed decarboxylative A3-coupling for propargylamine synthesis[J]. Chinese Chemical Letters, ;2020, 31(6): 1558-1563. doi: 10.1016/j.cclet.2019.11.004 shu

1D Fe3O4@CuSiO3 composites catalyzed decarboxylative A3-coupling for propargylamine synthesis

    * Corresponding authors.
    E-mail addresses: hdfeng@sues.edu.cn (H. Feng) zhangmin@sues.edu.cn (M. Zhang).
  • Received Date: 17 September 2019
    Revised Date: 3 November 2019
    Accepted Date: 3 November 2019
    Available Online: 1 June 2020

Figures(6)

  • Highly active and stable magnetic copper catalysts were successfully achieved by magnetic induced Stöber method and subsequent hydrothermal reaction with copper ions in alkaline condition. The high content of Cu2+ as well as the unique structures of hierarchical copper silicate in the as-prepared catalysts endowed their outstanding catalytic performance. Efficient decarboxylative A3-coupling of α-keto acid, amine and alkyne was realized with the low Fe3O4@CuSiO3 loading. A range of propargylamines were produced in good to excellent yields under solvent-free condition. Moreover, the catalyst can be easily separated from the final organic product with an external magnet. Also, this kind of catalyst could be recycled up to six times while maintaining its activity.
  • 加载中
    1. [1]

      (a) J.J. Chen, D.M. Swope, J. Clin. Pharmacol. 45 (2005) 878-894;
      (b) M. Baranyi, P.F. Porceddu, F. Gölöncse'r, et al., Mol. Neurodegener.11 (2016) 1-21;
      (c) I. Bolea, A. Gella, M. Unzeta, J. Neural Transm. 120 (2013) 893-902;
      (d) F.T. Zindo, J. Joubert, S.F. Malan, Future Med. Chem. 7 (2015) 609-629;
      (e) K. Lauder, A. Toscani, N. Scalacci, D. Castagnolo, Chem. Rev. 117 (2017) 14091-14200;
      (f) V.A. Peshkov, O.P. Pereshivko, A.A. Nechaev, A.A. Peshkov, E.V. Vander Eycken, Chem. Soc. Rev. 47 (2018) 3861-3898.

    2. [2]

      (a) X.X. Sun, C. Li, Y.Y. He, et al., Adv. Synth. Catal. 359 (2017) 2660-2670;
      (b) Y.M. Wang, H.H. Zhang, C. Li, T. Fan, F. Shi, Chem. Commun. 52 (2016) 1804-1807;
      (c) X.X.Sun, H.H.Zhang, G.H.Li, Y.Y.He, F.Shi, Chem.Eur.J.22 (2016)17526-17532.

    3. [3]

      (a) C. Wei, Z. Li, C.J. Li, Synlett (2004) 1472-1483;
      (b) L. Zani, C. Bolm, Chem. Commun. 38 (2006) 4263-4275;
      (c) V.A. Peshkov, O.P. Pereshivko, E. Van der Eycken, Chem. Soc. Rev. 41 (2012) 3790-3807;
      (d) D. Seidel, Org. Chem. Front. 1 (2014) 426-429.

    4. [4]

      (a) R. Shang, L. Liu, Sci. China Chem. 54 (2011) 1670-1687;
      (b) N. Rodríguez, L.J. Goossen, Chem. Soc. Rev. 40 (2011) 5030-5048;
      (c) J.D.Weaver, A.Recio, A.J.Grenning, J.A.Tunge, Chem.Rev.111(2011)1846-1913;
      (d) J. Schwarz, B. König, Green Chem. 20 (2018) 323-361;
      (e) H.D. Feng, H.H. Jia, Z.H. Sun, Adv. Synth. Catal. 357(2015) 2447-2452;
      (f) H.D. Feng, H.H. Jia, Z.H. Sun, J. Org. Chem. 79 (2014) 11812-17181.

    5. [5]

      (a) F.L. Vaillant, T.J. Courant, Angew. Chem. Int. Ed. 54 (2015) 11200-11204;
      (b) H.Zhang, P.X. Zhang, M.Jiang, H.J.Yang, H.Fu, Org. Lett.19 (2017)1016-1019;
      (c)H.D.Feng, D.S.Ermolat'ev, G.H.Song, E.VanderEycken, J.Org.Chem.76 (2011) 7608-7613;
      (d) P.F. Zhao, H.D. Feng, H.R. Pan, Z.H. Sun, M.C. Tong, Org. Chem. Front. 4 (2017) 37-41.

    6. [6]

      (a) H.P. Bi, L. Zhao, Y.M. Liang, C.J. Li, Angew. Chem. Int. Ed. 48 (2009) 792-795;
      (b) H.P. Bi, Q. Teng, M. Guan, et al., J. Org. Chem. 75 (2010) 783-788;
      (c) D. Chen, P. Huang, Y. Yu, et al., Chem. Commun. 47 (2011) 5801-5803;
      (d) H.D. Feng, D.S. Ermolat'ev, G.H. Song, E. Van der Eycken, J. Org. Chem. 77 (2012) 5149-5154;
      (e) H.D. Feng, D.S. Ermolat'ev, G.H. Song, E. Van der Eycken, Org. Lett.14 (2012) 1942-1945.

    7. [7]

      (a) I. Luz, F.X.L. Xamena, A. Corma, J. Catal. 285 (2012) 285-291;
      (b) G. Bosica, R. Abdilla, J. Mol. Catal. A: Chem. 426 (2017) 542-549;
      (c) A.V. Nakhat, G.D. Yada, Mol. Catal. 451(2018) 209-219.

    8. [8]

      (a) M.J. Aliaga, D.J. Ramón, M. Yus, Org. Biomol. Chem. 8 (2010) 43-46;
      (b) J.Y. Zhang, X. Huang, Q.Y. Shen, J.Y. Wang, G.H. Song, Chin. Chem. Lett. 29 (2018) 197-200.

    9. [9]

      (a) U.C. Rajesh, U. Gulati, D.S. Rawat, ACS Sustainable Chem. Eng. 4 (2016) 3409-3419;
      (b) P. Kaur, B. Kumar, V. Kumar, R. Kumar, Tetrahedron Lett. 59 (2018) 1986-1991;
      (c) U. Gulati, U.C. Rajesh, N. Bunekar, D.S. Rawat, ACS Sustainable Chem. Eng. 5 (2017) 4672-4682;
      (d) U. Gulati, U.C. Rajesh, D.S. Rawat, ACS Sustainable Chem. Eng. 6 (2018) 10039-10051.

    10. [10]

      (a) Y. Li, Y. Lu, C. Zhao, et al., Energy Storage Mater. 7 (2017) 130-151;
      (b) K.M. Kwok, S.W.D. Ong, L. Chen, H.C. Zeng, ACS Appl. Mater. Interface 9 (2017) 37210-37222.

    11. [11]

      M. Srinivas, P. Srinivasu, S.K. Bhargava, M.L. Kantam, Catal. Today 208 (2013) 66-71.  doi: 10.1016/j.cattod.2013.02.006

    12. [12]

      (a) M. Zhang, Y.T. Wang, Y.W. Zhang, et al., Appl. Surf. Sci. 375 (2016) 154-161;
      (b) Y. Zhang, M. Zhang, J. Yang, L.J. Zheng, J.L. Xu, J. Alloys Compd. 695 (2017) 3256-3266;
      (c) M. Zhang, B.Y. Wang, W.Z. Li, W.J. Gan, Dalton Trans. 45 (2016) 922-927;
      (d) M. Zhang, T. Miao, J. Zheng, et al., Microporous Mesoporous Mater. 286 (2019) 207-213.

    13. [13]

      J.W. Liu, J. Cheng, R.C. Che, et al., ACS Appl. Mater. Inter. 5 (2013) 2503-2509.  doi: 10.1021/am3030432

    14. [14]

      J. Choi, J. Lim, F.M. Irudayanathan, et al., Asian J. Org. Chem. 5 (2016) 770-777.  doi: 10.1002/ajoc.201600109

  • 加载中
    1. [1]

      Abolghasem DavoodniaMaryam KhashiNiloofar Tavakoli-Hoseini . Cerium (IV) sulfate:A highly efficient reusable heterogeneous catalyst for the one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones under solvent-free conditions. Chinese Journal of Catalysis, 2014, 35(7): 1054-1058. doi: 10.1016/S1872-2067(14)60041-3

    2. [2]

      Gholam Hossein Mahdavinia Mohammad A. Bigdeli Yaser Saeidi Hayeniaz . Covalently anchored sulfonic acid on silica gel (SiO2-R-SO3H) as an efficient and reusable heterogeneous catalyst for the one-pot synthesis of 1,8-dioxo-octahydroxanthenes under solvent-free conditions. Chinese Chemical Letters, 2009, 20(5): 539-541. doi: 10.1016/j.cclet.2008.12.026

    3. [3]

      Peng LiSridhar RegatiHui-Cai HuangHadi D. ArmanBang-Lin ChenJohn C.-G. Zhao . A sulfonate-based Cu(I) metal-organic framework as a highly efficient and reusable catalyst for the synthesis of propargylamines under solvent-free conditions. Chinese Chemical Letters, 2015, 26(1): 6-10. doi: 10.1016/j.cclet.2014.10.022

    4. [4]

      Manjulla GuptaSatya PaulRajive Gupta . SiO2-Cu2O:An efficient and recyclable heterogeneous catalyst for N-benzylation of primary and secondary amines. Chinese Journal of Catalysis, 2014, 35(3): 444-450. doi: 10.1016/S1872-2067(14)60009-7

    5. [5]

      Srinivasa Rao JettiAnjna BhatewaraTanuja KadreShubha Jain . Silica-bonded N-propyl sulfamic acid as an efficient recyclable catalyst for the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones/thiones under heterogeneous conditions. Chinese Chemical Letters, 2014, 25(3): 469-473. doi: 10.1016/j.cclet.2013.12.022

    6. [6]

      Abolghasem DAVOODNIAMaryam KHASHINiloofar TAVAKOLI-HOSEINI . Tetrabutylammonium hexatungstate [TBA]2[W6O19]: Novel and reusable heterogeneous catalyst for rapid solvent-free synthesis of polyhydroquinolines via unsymmetrical Hantzsch reaction. Chinese Journal of Catalysis, 2013, 34(6): 1173-1178. doi: 10.1016/S1872-2067(12)60547-6

    7. [7]

      Ying-Peng ZhangAi-Hong ShiYun-Shang YangChun-Lei Li . Impregnated copper on magnetite as catalyst for the O-arylation of phenols with aryl halides. Chinese Chemical Letters, 2014, 25(1): 141-145.

    8. [8]

      Ya Ping Xu Rong Hua Hu Ming Zhong Cai . A facile synthesis of terminal arylacetylenes via Sonogashira coupling reactions catalyzed by MCM-41-supported mercapto palladium(0) complex. Chinese Chemical Letters, 2008, 19(7): 783-787. doi: 10.1016/j.cclet.2008.05.016

    9. [9]

      Abdol R. HajipourHirbod Karimi . Acetylation of alcohols and phenols under solvent-free conditions using copper zirconium phosphate. Chinese Journal of Catalysis, 2014, 35(12): 1982-1989. doi: 10.1016/S1872-2067(14)60185-6

    10. [10]

      S. NarayananJ. Judith VijayaS. SivasankerSihai YangL. John Kennedy . Hierarchical ZSM-5 catalyst synthesized by a Triton X-100 assisted hydrothermal method. Chinese Journal of Catalysis, 2014, 35(11): 1892-1989. doi: 10.1016/S1872-2067(14)60177-7

    11. [11]

      Francesca LiguoriCarmen Moreno-MarrodanPierluigi Barbaro . Metal nanoparticles immobilized on ion-exchange resins: A versatile and effective catalyst platform for sustainable chemistry. Chinese Journal of Catalysis, 2015, 36(8): 1157-1169. doi: 10.1016/S1872-2067(15)60865-8

    12. [12]

      Abolghasem DavoodniaRahil MahjoobinNiloofar Tavakoli-Hoseini . A facile, green, one-pot synthesis of amidoalkyl naphthols under solvent-free conditions catalyzed by a carbon-based solid acid. Chinese Journal of Catalysis, 2014, 35(4): 490-495. doi: 10.1016/S1872-2067(14)60011-5

    13. [13]

      John MatthiesenThomas HoffChi LiuCharles PueschelRadhika RaoJean-Philippe Tessonnier . Functional carbons and carbon nanohybrids for the catalytic conversion of biomass to renewable chemicals in the condensed phase. Chinese Journal of Catalysis, 2014, 35(6): 842-855. doi: 10.1016/S1872-2067(14)60122-4

    14. [14]

      Bodireddy Mohan ReddyVelpula Venkata Ramana KumarNallagondu Chinna Gangi ReddySiripragada Mahender Rao . Silica gel catalyzed α-bromination of ketones using N-bromosuccinimide:An easy and rapid method. Chinese Chemical Letters, 2014, 25(1): 179-182.

    15. [15]

      Jerrik MielbyRaju PoreddyChristian EngelbrektSøren Kegnæs . Highly selective formation of imines catalyzed by silver nanoparticles supported on alumina. Chinese Journal of Catalysis, 2014, 35(5): 769-775. doi: 10.1016/S1872-2067(14)60033-4

    16. [16]

      Shuvo Jit DattaKyung Byung Yoon . Co-ETS-10 and Co-AM-6 as active catalysts for the oxidation of styrene to styrene oxide and benzaldehyde using molecular oxygen. Chinese Journal of Catalysis, 2015, 36(6): 897-905. doi: 10.1016/S1872-2067(15)60864-6

    17. [17]

      Abdol R. HajipourMorteza KarimzadehGhobad Azizi . Highly efficient and magnetically separable nano-CuFe2O4 catalyzed S-arylation of thiourea by aryl/heteroaryl halides. Chinese Chemical Letters, 2014, 25(10): 1382-1386. doi: 10.1016/j.cclet.2014.05.015

    18. [18]

      Mohammad Nikpassand Manouchehr Mamaghani Mohammad Ali Zanjanchi Nosrat Olah Mahmoodi Massomeh Mirzaeinejad . A convenient synthesis of 1,5-diarylpyrazoles from Baylis-Hillman adducts using HY-zeolite. Chinese Chemical Letters, 2010, 21(1): 5-8. doi: 10.1016/j.cclet.2009.07.020

    19. [19]

      Lig Fang Zha Wei Sen Yang Wen Yan Hao Ming Zhong Cai . Hydrosilylation of olefins over rhodium complex anchored over thioether-functionalized MCM-41. Chinese Chemical Letters, 2010, 21(11): 1310-1313. doi: 10.1016/j.cclet.2010.06.007

    20. [20]

      GAO YunnanLIU ShizhenZHAO ZhenqingTAO HengcongSUN Zhenyu . Heterogeneous Catalysis of CO2 Hydrogenation to C2+ Products. Acta Physico-Chimica Sinica, 2018, 34(8): 858-872. doi: 10.3866/PKU.WHXB201802061

Metrics
  • PDF Downloads(3)
  • Abstract views(135)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return