Citation: Wu Hao, Ma Nana, Song Mengxiao, Zhang Guisheng. Dimethyl sulfoxide-aided copper(0)-catalyzed intramolecular decarbonylative rearrangement of N-aryl isatins leading to acridones[J]. Chinese Chemical Letters, ;2020, 31(6): 1580-1583. doi: 10.1016/j.cclet.2019.10.043 shu

Dimethyl sulfoxide-aided copper(0)-catalyzed intramolecular decarbonylative rearrangement of N-aryl isatins leading to acridones

    * Corresponding authors.
    E-mail addresses: mann076@htu.edu.cn (N. Ma) zgs@htu.cn (G. Zhang).
  • Received Date: 25 September 2019
    Revised Date: 20 October 2019
    Accepted Date: 20 October 2019
    Available Online: 1 June 2020

Figures(4)

  • Described here is the first example of Cu(0)-catalyzed intramolecular decarbonylative rearrangements of readily available N-aryl isatins assisted by solvent dimethyl sulfoxide (DMSO) under air atmosphere and additive-free conditions leading to various biologically important acridones in good to excellent yields. This novel transformation is proposed to go through a sequential DMSO-aided Cu insertion into the amide C—N bond, CO extrusion, Cu migration, reductive elimination and DMSO-aided proton migration processes, involving multiple types of bond cleavage and formation in a single chemical step.
  • 加载中
    1. [1]

      (a) T. Kondo, Y. Taguchi, Y. Kaneko, M. Niimi, T. Mitsudo, Angew. Chem. Int. Ed. 43 (2004) 5369-5372;
      (b) P. Chen, T. Xu, G. Dong, Angew. Chem. Int. Ed. 53 (2014) 1674-1678;
      (c) T. Kondo, A. Nakamura, T. Okada, et al., J. Am. Chem. Soc. 122 (2000) 6319-6320;
      (d) M. Murakami, H. Amii, K. Shigeto, Y. Ito, J. Am. Chem. Soc. 118 (1996) 8285-8290;
      (e) R. Zeng, G. Dong, J. Am. Chem. Soc. 137 (2015) 1408-1411.

    2. [2]

      (a) W. Zhou, Y. Yang, Y. Liu, G.J. Deng, Green Chem. 15 (2013) 76-80;
      (b) J. Yu, H. Yang, Y. Jiang, H. Fu, Chem. -Eur. J. 19 (2013) 4271-4277.

    3. [3]

      H. Wu, Z. Zhang, Q. Liu, et al., Org. Lett. 20(2018) 2897-2901.  doi: 10.1021/acs.orglett.8b00957

    4. [4]

      (a) I.B. Taraporewala, J.W. Cessac, T.C. Chanh, A.V. Delgado, R.F. Schinazi, J. Med. Chem. 35 (1992) 2744-2752;
      (b) O. Tabarrini, G. Manfroni, A. Fravolini, et al., J. Med. Chem. 49 (2006) 2621-2617;
      (c) J.X. Kelly, M.J. Smilkstein, R. Brun, et al., Nature 459 (2009) 270-273.

    5. [5]

      T. Faller, K. Hutton, G. Okafo, et al., Chem. Commun. (1997) 1529-1530.  doi: 10.1039/A701787A

    6. [6]

      D. Zhang, X. Jiang, H. Yang, et al., Org. Biomol. Chem. 11(2013) 3375-3381.  doi: 10.1039/c3ob27500k

    7. [7]

      (a) X. Ye, P.N. Plessow, M.K. Brinks, et al., J. Am. Chem. Soc. 136 (2014) 5923-5929;
      (b) L.A. Graham, J. Suryadi, T.K. West, G.L. Kucera, U. Bierbach, J. Med. Chem. 55 (2012) 7817-7827.

    8. [8]

      S.L. MacNeil, B.J. Wilson, V. Snieckus, Org. Lett. 8(2006) 1133-1136.  doi: 10.1021/ol053162e

    9. [9]

      J. Wen, S. Tang, F. Zhang, R. Shi, A. Lei, Org. Lett. 19(2017) 94-97.  doi: 10.1021/acs.orglett.6b03356

    10. [10]

      (a) W. Zhou, Y. Liu, Y. Yang, G.J. Deng, Chem. Commun. 48 (2012) 10678-10680;
      (b) P.C. Huang, K. Parthasarathy, C.H. Cheng, Chem. -Eur. J. 19 (2013) 460-464.

    11. [11]

      (a) J. Zhao, R.C. Larock, J. Org. Chem. 72 (2007) 583-588;
      (b) X. Pang, Z. Lou, M. Li, L. Wen, C. Chen, Eur. J. Org. Chem. 15 (2015) 3361-3369.

    12. [12]

      (a) Y. Koguchi, J. Kohno, M. Nishio, et al., J. Antibiot. 53 (2000) 105;
      (b) M. Somei, F. Yamada, Nat. Prod. Rep. 20 (2003) 216-242;
      (c) C. Jing, T. Shi, D. Xing, X. Guo, W.H. Hu, Green Chem. 15 (2013) 620-624;
      (d) E.C. Elliott, E.R. Bowkett, J.L. Maggs, et al., Org. Lett. 20 (2011) 5592-5596;
      (e) P. Wu, H. Gao, J. Sun, C.G. Yan, Chin. Chem. Lett. 28 (2017) 329-322;
      (f) K. Stratmann, R.E. Moore, R. Bonjouklian, et al., J. Am. Chem. Soc. 116 (1994) 9935-9942;
      (g) J.L. Jimenez, U. Huber, R.E. Moore, G.M.L. Patterson, J. Nat. Prod. 62 (1999) 569-572;
      (h) H.B. Rasmussen, J.K. Macleod, J. Nat. Prod. 60 (1997) 1152-1154;
      (i) T. Tokunaga, W.E. Hume, T. Umezome, et al., J. Med. Chem. 44 (2001) 4641-4649;
      (j) Z. Xu, S. Zhang, C. Gao, et al., Chin. Chem. Lett. 28 (2017) 159-167;
      (k) R. Shintani, M. Inoue, T. Hayashi, Angew. Chem. Int. Ed. 45 (2006) 3353-3356;
      (l) R. Zeng, G. Dong, J. Am. Chem. Soc. 137 (2015) 1408-1411;
      (m) K. Meena, S. Kumari, J.M. Khurana, et al., Chin. Chem. Lett. 28 (2017) 136-142;
      (n) R.G. Shi, C.G. Yan, Chin. Chem. Lett. 27 (2016) 575-578.

    13. [13]

      (a) T. Liu, H. Yang, Y. Jiang, H. Fu, Adv. Synth. Catal. 355 (2013) 1169-1176;
      (b) G.C. Senadi, W.P. Hu, S.S.K. Boominathan, J.J. Wang, Chem. Eur. J. 21 (2015) 998-1003;
      (c) P. Moser, A. Sallmann, I. Wiesenberg, J. Med. Chem. 33 (1990) 2358-2368;
      (d) S. Nizalapur, O. Kimyon, N.N. Biswas, et al., Org. Biomol. Chem. 14 (2016) 680-693;
      (e) P.C. Huang, P. Gandeepan, C.H. Cheng, Chem. Commun. 49 (2013) 8540-8542;
      (f) J. Du, Y. Yang, H. Feng, Y. Li, B. Zhou, Chem. -Eur. J. 20 (2014) 5727-5731;
      (g) P. Qian, J.H. Su, Y. Wang, et al., J. Org. Chem. 82 (2017) 6434-6440;
      (h) A. Ilangovan, G. Satish, Org. Lett. 15 (2013) 5726-5729;
      (i) C. Zhang, S. Li, F. Buress, et al., ACS Catal. 6 (2016) 6853-6860;
      (j) Y. Zi, Z.J. Cai, S.Y. Wang, S.J. Ji, Org. Lett. 16 (2014) 3094-3097;
      (k) J. Luo, S. Gao, Y. Ma, G. Ge, Synlett 29 (2018) 969-973;
      (l) B. Tang, R. Song, C. Wu, et al., J. Am. Chem. Soc. 132 (2010) 8900-8902.

    14. [14]

      (a) T.X. Liu, S. Yue, C. Wei, et al., Chem. Commun. 54 (2018) 13331-13334;
      (b) S. Song, X. Li, X. Sun, Y. Yuan, N. Jiao, Green Chem. 17 (2015) 3285-3289;
      (c) Z. Zhang, Q. Tian, J. Qian, et al., J. Org. Chem. 79 (2014) 8182-8188;
      (d) J. Qian, Z. Zhang, Q. Liu, T. Liu, G. Zhang, Adv. Synth. Catal. 356 (2014) 3119-3124.

    15. [15]

      M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2013.

    16. [16]

      (a) Q.C. Zhang, X. Li, X. Wang, et al., Org. Chem. Front. 6 (2019) 679-687;
      (b) X. Li, S.J. Li, Y. Wang, et al., Catal. Sci. Technol. 9 (2019) 2514-2522.

  • 加载中
    1. [1]

      Li Xin-LeLang Xiao-MeiYang Lian-MingZhou Sheng-YuanHu Hong-FanXue ShanSun XinXin Shi-Xuan . Nickel-catalyzed C-N crossing coupling reaction: The synthetic method for N-aryl substituted indenoindole. Chinese Chemical Letters, 2017, 28(3): 569-574. doi: 10.1016/j.cclet.2016.11.002

    2. [2]

      Cong ZHANG Xiao Chuan GUO Xiu Min SHEN Yong Fen XU . ACID CATALYZED REARRANGEMENTS OF TRIQUINANES. Chinese Chemical Letters, 1995, 6(3): 177-180.

    3. [3]

      Song MengmengZhang ZhiguoZheng DanLi XiangLiang RuiZhao Xu'naShi LeiZhang Guisheng . Hypervalent Organoiodine Promoted Dearylation Reaction of N-Aryl Sulfonamides. Chinese Journal of Organic Chemistry, 2020, 40(8): 2433-2441. doi: 10.6023/cjoc202001007

    4. [4]

      HAO Peng-FeiYANG Jun-JuanYANG ZhiMA Xiao-LiYANG YingLI Jia-Rong . Synthesis, Characterization and Thermal Property of the Aluminum Boroxine-linked Compound with N-aryl Substituted β-Diketiminato Ligand. Chinese Journal of Structural Chemistry, 2015, 34(5): 729-734. doi: 10.14102/j.cnki.0254-5861.2011-0421

    5. [5]

      Chun Chun ZHANG Wei ZENG Jian Zhang LI Sheng Ying QIN . Dioxygen Affinities and Catalytic Oxidation Performance of Cobalt (Ⅱ) Complexes with N-Aryl Hydroxamic Acid. Chinese Chemical Letters, 2003, 14(6): 627-630.

    6. [6]

      Ming Zhong CAI Xian HUANG Cai Sheng SONG . Arylation of Allylic Alcohols with Aryl Iodides Catalyzed by a Silica-Bound Bidentate Sulfur Palladium (0) Complex. Chinese Chemical Letters, 1998, 9(5): 427-430.

    7. [7]

      Ya-Shuai LiuYan LiuXiao-Wei MaPing LiuJian-Wei XieBin Dai . 3-(Diphenylphosphino)propanoic acid:An efficient ligand for the Cu-catalyzed N-arylation of imidazoles and 1H-pyrazole with aryl halides. Chinese Chemical Letters, 2014, 25(05): 775-778. doi: 10.1016/j.cclet.2014.01.042

    8. [8]

      Yu ZhengweiLi LinyiShen Zengming . Cu-Catalyzed Cyanation of Aryl Iodides with Acetonitrile as Cyano Source. Chinese Journal of Organic Chemistry, 2017, 37(5): 1273-1277. doi: 10.6023/cjoc201612015

    9. [9]

      Hui Jin Zhen Dong Huang Chun Xiang Kuang Xiao Kun Wang . Iron-catalyzed bromination of aryl azides by N-bromosuccinimide:Efficient method for the synthesis of brominated aryl azides. Chinese Chemical Letters, 2011, 22(3): 310-313. doi: 10.1016/j.cclet.2010.10.024

    10. [10]

      Ya Ping Xu Rong Hua Hu Ming Zhong Cai . A facile synthesis of terminal arylacetylenes via Sonogashira coupling reactions catalyzed by MCM-41-supported mercapto palladium(0) complex. Chinese Chemical Letters, 2008, 19(7): 783-787. doi: 10.1016/j.cclet.2008.05.016

    11. [11]

      Qiu Hua Xu Ping Ping Wang Ming Zhong Cai . A facile approach to asymmetrical biaryls via coupling reaction of aryl halides with sodium tetraphenylborate catalyzed by MCM-41-supported sulfur palladium(0) complex. Chinese Chemical Letters, 2007, 18(4): 387-389. doi: 10.1016/j.cclet.2007.01.046

    12. [12]

      Zheng LimengShi DongdongBao HanyangLiu Yunkui . Copper(0)/Selectfluor System-Catalyzed Tandem Annulation/ Aromatization of o-Aryl Benzenesulfonylimides: A Facile Synthesis of 6H-Phenanthridines. Chinese Journal of Organic Chemistry, 2019, 39(10): 2821-2828. doi: 10.6023/cjoc201904058

    13. [13]

      Yu-Bo JiangWen-Sheng ZhangHui-Ling ChengYu-Qi LiuRui Yang . One-pot synthesis of N-aryl propargylamine from aromatic boronic acid, aqueous ammonia, and propargyl bromide under microwave-assisted conditions. Chinese Chemical Letters, 2014, 25(05): 779-782. doi: 10.1016/j.cclet.2014.03.011

    14. [14]

      Ben-Quan HuLi-Xia WangJun-Feng XiangLuo YangYa-Lin Tang . Cu(II)-catalyzed domino reaction of 2-halobenzamide and arylmethanamine to construct 2-aryl quinazolinone. Chinese Chemical Letters, 2015, 26(3): 369-372. doi: 10.1016/j.cclet.2014.12.006

    15. [15]

      Wei LiuLi-Ya HanRui-Li LiuLi-Ge XuYan-Lan Bi . Copper-catalyzed N-arylation of 2-arylindoles with aryl halides. Chinese Chemical Letters, 2014, 25(9): 1240-1243. doi: 10.1016/j.cclet.2014.04.021

    16. [16]

      Xiang Mei Wu Yan WangN-Arylation of azaheterocycles with aryl and heteroaryl halides catalyzed by iminodiacetic acid resin-chelated copper complex. Chinese Chemical Letters, 2010, 21(1): 51-54. doi: 10.1016/j.cclet.2009.08.012

    17. [17]

      Yu Gui LI Xue Feng ZHU . STUDIES ON THE SYNTHESIS AND REACTIONS OF N-(1-OXO-4-CARBONYL-2,6,7-TRIOXA-1-PHOSPHABICYCLO [2.2.2] OCTANE)-N'-ARYL THIOUREAS. Chinese Chemical Letters, 1995, 6(1): 19-22.

    18. [18]

      Feng-Tian WuPing LiuXiao-Wei MaJian-Wei XieBin Dai . Tetrazole-1-acetic acid as a ligand for copper-catalyzed N-arylation of imidazoles with aryl iodides under mild conditions. Chinese Chemical Letters, 2013, 24(10): 893-896.

    19. [19]

      A. Davoodnia M. Bakavoli M. Soleimany H.Behmadi . A new one-pot neat synthesis of 1,2,4-triazol-3-ones through 4-(N, N-dimethylamino) pyridine (DMAP) catalyzed cyclocondensation of ethyl carbazate with aryl nitriles. Chinese Chemical Letters, 2008, 19(6): 685-688. doi: 10.1016/j.cclet.2008.04.022

    20. [20]

      Zhen Lu SHEN Xuan Zhen JIANG . A Novel Synthesis of N-Methyl-N-aryl Carbamates from Aromatic Amines and Dimethyl Carbonate Catalyzed by K2CO3/Bu4NBr. Chinese Chemical Letters, 2004, 15(8): 889-891.

Metrics
  • PDF Downloads(1)
  • Abstract views(147)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return