Citation: Liu Kai-Jian, Zeng Tang-Yu, Zeng Jia-Le, Gong Shao-Feng, He Jun-Yi, Lin Ying-Wu, Tan Jia-Xi, Cao Zhong, He Wei-Min. Solvent-dependent selective oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid under neat conditions[J]. Chinese Chemical Letters, ;2019, 30(12): 2304-2308. doi: 10.1016/j.cclet.2019.10.031 shu

Solvent-dependent selective oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid under neat conditions

    * Corresponding author at: Department of Chemistry, Hunan University of Science and Engineering, Yongzhou 425100, China.
    E-mail address: weiminhe2016@yeah.net (W.-M. He).
  • Received Date: 18 September 2019
    Revised Date: 4 October 2019
    Accepted Date: 25 October 2019
    Available Online: 31 December 2019

Figures(8)

  • An eco-friendly and economical route for the oxidation of 5-hydroxymethylfurfural (HMF) to 2, 5-furandicarboxylic acid (FDCA) with atmospheric dioxygen as the sole oxidant under acid-, base-, metal-, and external initiator-free conditions in minimal solvent was reported. In the present reaction, the 1, 2-diethoxyethylane has a dual role:reaction medium and free-radical initiator. The FDCA easily crystallizes during the reaction and was simple purified via recrystallization to provide the pure FDCA.
  • 加载中
    1. [1]

      (a) Z. Zhang, K. Deng, ACS Catal. 5 (2015) 6529-6544;
      (b) Q. Mei, X. Shen, H. Liu, B. Han, Chin. Chem. Lett. 30 (2019) 15-24;
      (c) J. Xu, W. Huang, R. Bai, et al., Green Chem. 21 (2019) 2061-2069;
      (d) L. Peng, Z. Hu, Q. Lu, et al., Chin. Chem. Lett. (2019), doi: http://dx.doi.org/10.1016/j.cclet.2019.05.063;
      (e) M. Sun, J. Jiang, J. Chen, Q. Yang, X. Yu, Tetrahedron 75 (2019) 130456;
      (f) Y. Gu, F. Jerome, Chem. Soc. Rev. 42 (2013) 9550-9570.

    2. [2]

      (a) M. Sajid, X. Zhao, D. Liu, Green Chem. 20 (2018) 5427-5453;
      (b) X. Kong, Y. Zhu, Z. Fang, et al., Green Chem. 20 (2018) 3657-3682;
      (c) K.K. Sun, S.J. Chen, Z.L. Li, G.P. Lu, C. Cai, Green Chem. 21 (2019) 1602-1608.

    3. [3]

      A.A. Rosatella, S.P. Simeonov, R.F.M. Frade, C.A.M. Afonso, Green Chem. 13 (2011) 754-793.  doi: 10.1039/c0gc00401d

    4. [4]

      (a) D.Y. Hu, M.S. Li, W.W. Zhong, et al., Chin. Chem. Lett. 27 (2016) 1691-1695;
      (b) L. Wang, P. Bao, W. Liu, et al., Chin. J. Org. Chem. 38 (2018) 3189-3196;
      (c) W. Wei, H. Cui, H. Yue, D. Yang, Green Chem. 20 (2018) 3197-3202;
      (d) K.J. Liu, Z.H. Duan, X.L. Zeng, et al., ACS Sustainable Chem. Eng. 7 (2019) 10293-10298;
      (e) R. Li, X. Chen, S. Wei, et al., Adv. Synth. Catal. 360 (2018) 4807-4813;
      (f) B. Liu, L. Cheng, P. Hu, et al., Chem. Commun. 55 (2019) 4817-4820;
      (g) P. Hu, M. Tan, L. Cheng, et al., Nat. Commun. 10 (2019) 2425;
      (h) Q. Liu, L. Wang, H. Yue, et al., Green Chem. 21 (2019) 1609-1603;
      (i) L. Zou, P. Li, B. Wang, L. Wang, Green Chem. 21 (2019) 3362-3369;
      (j) Z. Cheng, W. Jin, C. Liu, Org. Chem. Front. 6 (2019) 841-845;
      (k) G. Li, Q. Yan, X. Gong, X. Dou, D. Yang, ACS Sustainable Chem. Eng. 7 (2019) 14009-14015;
      (l) L. Wang, Y. Zhang, M. Zhang, et al., Tetrahedron Lett. 60 (2019) 1845-1848;
      (m) D.Q. Dong, L.X. Li, G.H. Li, Q. Deng, Z.L. Wang, Chin. J. Catal. 40 (2019) 1494-1498;
      (n) G.H. Li, D.Q. Dong, Q. Deng, S.Q. Yan, Z.L. Wang, Synthesis 51 (2019) 3313-3319;
      (o) L. Wang, M. Zhang, Y. Zhang, et al., Chin. Chem. Lett. (2019), doi: http://dx.doi.org/10.1016/j.cclet.2019.05.041;
      (p) X. Zhang, S. Dong, Q. Ding, X. Fan, G. Zhang, Chin. Chem. Lett. 30 (2019) 375-378;
      (q) Y. Zhang, K. Sun, Q. Lv, et al., Chin. Chem. Lett. 30 (2019) 1361-1368;
      (r) C. Zhou, P. Diao, X. Li, Y. Ge, C. Guo, Chin. Chem. Lett. 30 (2019) 371-374;
      (s) Q. Fu, D. Yi, Z. Zhang, et al., Org. Chem. Front. 4 (2017) 1385-1389;
      (t) W. Liang, Z. Zhang, D. Yi, et al., Chin. J. Chem 35 (2017) 1378-1382;
      (u) D.Q. Dong, L.X. Li, G.H. Li, et al., Chin. J. Catal. 40 (2019) 1494-1498;
      (v) L.-Y. Xie, T.-G. Fang, J.-X. Tan, et al., Green Chem. 21 (2019) 3858-3863.

    5. [5]

      (a) W. Partenheimer, V.V. Grushin, Adv. Synth. Catal. 343 (2001) 102-111; (b) X. Zuo, A.S. Chaudhari, K. Snavely, et al., AlChE J. 63 (2017) 162-171.

    6. [6]

      (a) X. Han, C. Li, X. Liu, Q. Xia, Y. Wang, Green Chem. 19 (2017) 996-1004;
      (b) L. Zheng, J. Zhao, Z. Du, B. Zong, H. Liu, Sci. China Chem. 60 (2017) 950-957;
      (c) C.P. Ferraz, M. Zielinski, M. Pietrowski, et al., ACS Sustainable Chem. Eng. 6 (2018) 16332-16340;
      (d) O.R. Schade, K.F. Kalz, D. Neukum, W.Kleist, J.D. Grunwaldt, GreenChem. 20 (2018) 3530-3541;
      (e) D. Yan, J. Xin, Q. Zhao, et al., Catal. Sci. Technol. 8 (2018) 164-175.

    7. [7]

      (a) W.H. Bao, Z. Wang, X. Tang, et al., Chin. Chem. Lett. (2019), doi: http://dx.doi.org/10.1016/j.cclet.2019.06.052;
      (b) L.H. Lu, Z. Wang, W. Xia, et al., Chin. Chem. Lett. 30 (2019) 1237-1240;
      (c) S. Peng, Y.X. Song, J.Y. He, et al., Chin. Chem. Lett. (2019), doi: http://dx.doi.org/10.1016/j.cclet.2019.08.002;
      (d) L. Peng, Z. Hu, Z. Tang, Y. Jiao, X. Xu, Chin. Chem. Lett. 30 (2019) 1481-1487;
      (e) Z. Cao, Q. Zhu, Y.W. Lin, W.M. He, Chin. Chem. Lett. (2019), doi: http://dx.doi.org/10.1016/j.cclet.2019.09.041;
      (f) T.Y. Shang, L.H. Lu, Z. Cao, et al., Chem. Commun. 55 (2019) 5408-5419;
      (g) L.Y. Xie, S. Peng, L.L. Jiang, et al., Org. Chem. Front. 2 (2019) 167-171;
      (h) L.Y. Xie, S. Peng, T.G. Fan, et al., Sci. China Chem. 62 (2019) 460-464.

    8. [8]

      E.M. Kwon, C.G. Kim, A.R. Goh, J. Park, J.G. Jun, B. Korean Chem. Soc. 33 (2012) 1939-1944.  doi: 10.5012/bkcs.2012.33.6.1939

    9. [9]

      J.T. Miao, L. Yuan, Q. Guan, G. Liang, A. Gu, ACS Sustainable Chem. Eng. 5 (2017) 7003-7011.  doi: 10.1021/acssuschemeng.7b01222

    10. [10]

      M. Iqbal, J. Huskens, W. Verboom, M. Sypula, G. Modolo, Supramol. Chem. 22 (2010) 827-837.  doi: 10.1080/10610278.2010.506553

    11. [11]

      (a) R.S. Drago, R. Riley, J. Am. Chem. Soc. 112 (1990) 215-218;
      (b) N. Tada, T. Ishigami, L. Cui, et al., Tetrahedron Lett. 54 (2013) 256-258.

    12. [12]

      S. Wang, Z. Zhang, B. Liu, ACS Sustainable Chem. Eng. 3 (2015) 406-412.  doi: 10.1021/sc500702q

    13. [13]

      (a) B. Donoeva, N. Masoud, P.E. de Jongh, ACS Catal. 7 (2017) 4581-4591;
      (b) Q. Wang, W. Hou, S. Li, et al., Green Chem. 19 (2017) 3820-3830.

    14. [14]

      H. Ait Rass, N. Essayem, M. Besson, Green Chem. 15 (2013) 2240-2251.  doi: 10.1039/c3gc40727f

    15. [15]

      (a) S. Shi, M. Liu, L. Zhao, et al., Chem. Asian J. 12 (2017) 2404-2409;
      (b) K.J. Liu, S. Jiang, L.H. Lu, et al., Green Chem. 20 (2018) 3038-3043;
      (c) K.J. Liu, Y.L. Fu, L.Y. Xie, et al., ACS Sustainable Chem. Eng. 6 (2018) 4916-4921.

  • 加载中
    1. [1]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    2. [2]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    3. [3]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    4. [4]

      Mengzhao LiuJie YinChengjian WangWeiji WangYuan GaoMengxia YanPing Geng . P doped Ni3S2 and Ni heterojunction bifunctional catalysts for electrocatalytic 5-hydroxymethylfurfural oxidation coupled hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(9): 111271-. doi: 10.1016/j.cclet.2025.111271

    5. [5]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    6. [6]

      Pengfei LiChulin QuFan WuHu GaoChengyan ZhaoYue ZhaoZhen Shen . Robust free-base and metalated corrole radicals with reduction-induced emission. Chinese Chemical Letters, 2025, 36(2): 110292-. doi: 10.1016/j.cclet.2024.110292

    7. [7]

      Qing LiYumei FengYuhua XieQi XuYifei LiYingjie YuFang LuoZehui Yang . MOF derived RuO2/V2O5 nanoneedles for robust and stable water oxidation in acid. Chinese Chemical Letters, 2025, 36(7): 111074-. doi: 10.1016/j.cclet.2025.111074

    8. [8]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    9. [9]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    10. [10]

      Min YanZihao YePing Lu . Catalyst-free, visible-light-induced [2π + 2σ] cycloaddition towards azabicyclohexanes. Chinese Chemical Letters, 2025, 36(6): 110540-. doi: 10.1016/j.cclet.2024.110540

    11. [11]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    12. [12]

      Xinghao CaiChen MaYing KangYuqiang RenXue MengWei LuShiming FanShouxin Liu . Nickel-catalyzed C(sp2)–H alkynylation of free α-substituted benzylamines using a transient directing group. Chinese Chemical Letters, 2025, 36(10): 110901-. doi: 10.1016/j.cclet.2025.110901

    13. [13]

      Ying ZhaoYao HeJian-Xin YangWen-Jie LiuDan TianFrancisco AznarezLe-Le GongLi-Long DangLu-Fang Ma . Controllable self-assembly and photothermal conversion of metalla[2]catenanes induced by synergistic effect of free radicals and stacking interactions. Chinese Chemical Letters, 2025, 36(12): 111460-. doi: 10.1016/j.cclet.2025.111460

    14. [14]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    15. [15]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    16. [16]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    17. [17]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    18. [18]

      Aimin FuChunmei ChenQin LiNanjin DingJiaxin DongYu ChenMengsha WeiWeiguang SunHucheng ZhuYonghui Zhang . Niduenes A−F, six functionalized sesterterpenoids with a pentacyclic 5/5/5/5/6 skeleton from endophytic fungus Aspergillus nidulans. Chinese Chemical Letters, 2024, 35(9): 109100-. doi: 10.1016/j.cclet.2023.109100

    19. [19]

      Mohamed Saber LassouedFaizan AhmadYanzhen Zheng . Film thickness effect on 2D lead-free hybrid double perovskite properties: Band gap, photocurrent and stability. Chinese Chemical Letters, 2025, 36(4): 110477-. doi: 10.1016/j.cclet.2024.110477

    20. [20]

      Aonan WangJingwen DaiYiming GuoFanghua NingXiaoyu LiuSidra SubhanJiaqian QinShigang LuJin Yi . Imidazolium bromide based dual-functional redox mediator for the construction of dendrite-free Li-CO2 batteries. Chinese Chemical Letters, 2025, 36(7): 110186-. doi: 10.1016/j.cclet.2024.110186

Metrics
  • PDF Downloads(5)
  • Abstract views(1122)
  • HTML views(54)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return