Citation: Ni Zibin, Bao Shenyuan, Gong Xue-Qing. A DFT study of the CO adsorption and oxidation at ZnO surfaces and its implication for CO detection[J]. Chinese Chemical Letters, ;2020, 31(6): 1674-1679. doi: 10.1016/j.cclet.2019.10.027 shu

A DFT study of the CO adsorption and oxidation at ZnO surfaces and its implication for CO detection

    * Corresponding author.
    E-mail address: xgong@ecust.edu.cn (X.-Q. Gong).
  • Received Date: 7 September 2019
    Revised Date: 20 October 2019
    Accepted Date: 22 October 2019
    Available Online: 24 October 2019

Figures(4)

  • Recently, ZnO-based gas sensors have been successfully fabricated and widely studied for their excellent sensitivity and selectivity, especially in CO detection. However, detailed explorations of their mechanisms are rather limited. Herein, aiming at clarifying the sensing mechanism, we carried out density functional theory (DFT) calculations to track down the CO adsorption and oxidation on the ZnO (1010) and (1120) surfaces. The calculated results show that the lattice O of ZnO(1010) is more reactive than that of ZnO(1120) for CO oxidation. From the calculated energetics and structures, the main reaction product on both surfaces can be determined to be CO2 rather than carbonate. Moreover, the surface conductivity changes during the adsorption and reaction processes of CO were also studied. For both ZnO (1010) and (1120), the conductivity would increase upon CO adsorption and decrease following CO oxidation, in consistence with the reported experimental results. This work can help understand the origins of ZnO-based sensors' performances and the development of novel gas sensors with higher sensitivity and selectivity.
  • 加载中
    1. [1]

      P. Rodlamul, S. Tamura, N. Imanaka, J. Ceram. Soc. Jpn. 126(2018) 750-754.

    2. [2]

      World Health Organization, WHO Guidelines for Indoor Air Quality: Selected Pollutants, (2010).

    3. [3]

      K.Z. Qi, G.C. Wang, W.J. Zheng, Surf. Sci. 614(2013) 53-63.

    4. [4]

      D. Punetha, S.K. Pandey, IEEE Sens. J. 19(2019) 2450-2457.

    5. [5]

      T. Nandy, R.A. Coutu, C. Ababei, Sensors 18 (2018) 3443.

    6. [6]

      J.K. Lee, W.S. Lee, W.I. Lee, et al., Phys. Status Solidi A. 215(2018) 1700929.

    7. [7]

      M. Hjiri, L. El Mir, S.G. Leonardi, et al., Sens. Actuators B-Chem. 196(2014) 413-420.

    8. [8]

      L. Zhu, W. Zeng, Sens. Actuators A-Phys. 267(2017) 242-261.

    9. [9]

      K.Z. Qi, X.H. Xing, A. Zada, et al., Ceram. Int. 46(2020) 1494-1502.

    10. [10]

      K.Z. Qi, B. Cheng, J.G. Yu, W.K. Ho, J. Alloys. Compd. 727(2017) 792-820.

    11. [11]

      K.Z. Qi, Q. Qin, X.C. Duan, et al., Chem. Eur. J. 20(2014) 9012-9017.

    12. [12]

      K.Z. Qi, J.Q. Yang, J.Q. Fu, et al., CrystEngComm 15(2013) 6729-6735.

    13. [13]

      S. Arunkumar, T. Hou, Y. Kim, et al., Sens. Actuators B-Chem. 243(2017) 990-1001.

    14. [14]

      R. Dhahri, M. Hjiri, L. El Mir, et al., J. Phys. D Appl. Phys. 49(2016) 135502.

    15. [15]

      X. Pan, X. Zhao, Sensors 15(2015) 8919-8930.

    16. [16]

      O. Lupan, V. Cretu, V. Postica, et al., Sens. Actuators B-Chem. 223(2016) 893-903.

    17. [17]

      K. Yadav, S.K. Gahlaut, B.R. Mehta, J.P. Singh, Appl. Phys. Lett. 108 (2016) 071602.

    18. [18]

      S.M. Mohammad, Z. Hassan, R.A. Talib, et al., J. Mater. Sci. 27(2016) 9461-9469.

    19. [19]

      S.W. Fan, A.K. Srivastava, V.P. Dravid, Appl. Phys. Lett. 95(2009) 142106.

    20. [20]

      R. Paulraj, P. Shankar, G.K. Mani, L. Nallathambi, J.B.B. Rayappan, J.Mater. Sci. 28(2017) 10799-10805.

    21. [21]

      T.Y. Tiong, C.F. Dee, A.A. Hamzah, B.Y. Majlis, S.A. Rahman, Sens. Actuators BChem. 202(2014) 1322-1332.

    22. [22]

      J. Wang, X. Li, Y. Xia, et al., ACS Appl. Mater. Interfaces 8(2016) 8600-8607.

    23. [23]

      M.R. Alenezi, S.J. Henley, N.G. Emerson, S.R.P. Silva, Nanoscale 6(2014) 235-247.

    24. [24]

      L.M. Yu, F. Guo, S. Liu, et al., J. Alloys. Compd. 682(2016) 352-356.

    25. [25]

      A. Gusain, N.J. Joshi, P.V. Varde, D.K. Aswal, Sens. Actuators B-Chem. 239(2017) 734-745.

    26. [26]

      B.H. Zhang, M. Li, Z.L. Song, et al., Sens. Actuators B-Chem. 249(2017) 558-563.

    27. [27]

      Z.S. Hosseini, A. Irajizad, A. Mortezaali, Sens. Actuators B-Chem. 207(2015) 865-871.

    28. [28]

      J.F. Deng, Q.Y. Fu, W. Luo, et al., Sens. Actuators B-Chem. 224(2016) 153-158.

    29. [29]

      G. Kresse, J. Hafner, Phys. Rev. B 47(1993) 558-561.

    30. [30]

      G. Kresse, J. Hafner, Phys. Rev. B 49(1994) 14251-14269.

    31. [31]

      J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(1996) 3865-3868.

    32. [32]

      P.E. Blochl, Phys. Rev. B 50(1994) 17953-17979.

    33. [33]

      G. Kresse, D. Joubert, Phys. Rev. B 59(1999) 1758-1775.

    34. [34]

      A. Alavi, P. Hu, T. Deutsch, P.L. Silvestrelli, J. Hutter, Phys. Rev. Lett. 80(1998) 3650-3653.

    35. [35]

      D. Wang, J. Jiang, H.F. Wang, P. Hu, ACS Catal. 6(2015) 733-741.

    36. [36]

      H.F. Wang, Z.P. Liu, J. Am. Chem. Soc. 130(2008) 10996-11004.

    37. [37]

      D.J. Cooke, A. Marmier, S.C. Parker, J. Phys. Chem. B 110(2006) 7985-7991.

    38. [38]

      T. Arai, K. Maruya, K. Domen, T. Onishi, Chem. Lett. 1(1989) 47-50.

    39. [39]

      Y. Madier, C. Descorme, A.M. Le Govic, D. Duprez, J. Phys. Chem. B 103(1999) 10999-11006.

    40. [40]

      M.Boaro, F.Giordano, S.Recchia, etal., Appl.Catal.BEnviron.52(2004)225-237.

    41. [41]

      J.M. Ziman, Principles of The Theory of Solids, World Book Inc, Beijing, 2009.

    42. [42]

      S. Mehraeen, V. Coropceanu, J.L. Bredas, Phys. Rev. B 87 (2013) 195209.

    43. [43]

      J.P. Heremans, B. Wiendlocha, A.M. Chamoire, Energ. Environ. Sci. 5(2012) 5510-5530.

    44. [44]

      M. Boujnah, M. Boumdyan, S. Naji, et al., J. Alloys. Compd. 671(2016) 560-565.

    45. [45]

      Q.Y. Hou, J.J. Li, C.W. Zhao, C. Ying, Y. Zhang, Physica B 406(2011) 1956-1960.

    46. [46]

      D. Fruchart, V.A. Romaka, Y.V. Stadnyk, et al., J. Alloys. Compd. 438(2007) 8-14.

    47. [47]

      T. Yamamoto, Phys. Status Solidi 193(2002) 423-433.

    48. [48]

      M. Saha, S. Ghosh, V.D. Ashok, S.K. De, Phys. Chem. Chem. Phys. 17(2015) 16067-16079.

    49. [49]

      A. Nakrela, N. Benramdane, A. Bouzidi, et al., Results Phys. 6(2016) 133-138.

    50. [50]

      Z.H. Wang, Z.W. Tian, D.M. Han, F.B. Gu, ACS Appl. Mater. Interfaces 8(2016) 5466-5474.

    51. [51]

      D. Gaspar, L. Pereira, K. Gehrke, et al., Sol. Energy Mater. Sol. Cells 163(2017) 255-262.

  • 加载中
    1. [1]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    2. [2]

      Irshad Ahmad Yifei Zhang Ayman Al-Qattan S. AlFaify Gao Li . Unlocking the engineering of solar-driven ZnO composites: From fundaments to sustainable and eco-friendly chemical energy. Chinese Journal of Structural Chemistry, 2025, 44(11): 100700-100700. doi: 10.1016/j.cjsc.2025.100700

    3. [3]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    4. [4]

      Jumei ZhangZiheng ZhangGang LiHongjin QiaoHua XieLing Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278

    5. [5]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    6. [6]

      Yu DengYan LiuYonghui DengJinsheng ChengYidong ZouWei LuoIn situ sulfur-doped mesoporous tungsten oxides for gas sensing toward benzene series. Chinese Chemical Letters, 2024, 35(7): 108898-. doi: 10.1016/j.cclet.2023.108898

    7. [7]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    8. [8]

      Siqi SunCheng ZhaoZhaohuan ZhangDing WangXinru YinJingting HanJinlei WeiYong ZhaoYongheng Zhu . Highly selective QCM sensor based on functionalized hierarchical hollow TiO2 nanospheres for detecting ppb-level 3-hydroxy-2-butanone biomarker at room temperature. Chinese Chemical Letters, 2025, 36(5): 109939-. doi: 10.1016/j.cclet.2024.109939

    9. [9]

      Jin LiXin ChenAling ChenZhi-Qiang WangDengsong Zhang . Theoretical insight into the active sites for chlorobenzene oxidation: From phosphate to M3 clusters. Chinese Chemical Letters, 2025, 36(8): 110527-. doi: 10.1016/j.cclet.2024.110527

    10. [10]

      Yanhui LuChengang PeiWenqiang LiQing LiuHuan PangXu Yu . Tailoring active sites of cerium and nitrogen Co-doped rhenium disulfide for enhanced hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(12): 111646-. doi: 10.1016/j.cclet.2025.111646

    11. [11]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    12. [12]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    13. [13]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    14. [14]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    15. [15]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    16. [16]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    17. [17]

      Ze ZhangLei YangJin-Ru LiuHao HuJian-Li MiChao SuBei-Bei XiaoZhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013

    18. [18]

      Chaozheng HeMenghui XiChenxu ZhaoRan WangLing FuJinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671

    19. [19]

      Mianfeng LiHaozhi WangZijun YangZexiang YinYuan LiuYingmei BianYang WangXuerong ZhengYida Deng . Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni-Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chinese Chemical Letters, 2025, 36(3): 110199-. doi: 10.1016/j.cclet.2024.110199

    20. [20]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

Metrics
  • PDF Downloads(15)
  • Abstract views(2059)
  • HTML views(241)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return