Citation: Ni Zibin, Bao Shenyuan, Gong Xue-Qing. A DFT study of the CO adsorption and oxidation at ZnO surfaces and its implication for CO detection[J]. Chinese Chemical Letters, ;2020, 31(6): 1674-1679. doi: 10.1016/j.cclet.2019.10.027 shu

A DFT study of the CO adsorption and oxidation at ZnO surfaces and its implication for CO detection

    * Corresponding author.
    E-mail address: xgong@ecust.edu.cn (X.-Q. Gong).
  • Received Date: 7 September 2019
    Revised Date: 20 October 2019
    Accepted Date: 20 October 2019
    Available Online: 1 June 2020

Figures(4)

  • Recently, ZnO-based gas sensors have been successfully fabricated and widely studied for their excellent sensitivity and selectivity, especially in CO detection. However, detailed explorations of their mechanisms are rather limited. Herein, aiming at clarifying the sensing mechanism, we carried out density functional theory (DFT) calculations to track down the CO adsorption and oxidation on the ZnO (1010) and (1120) surfaces. The calculated results show that the lattice O of ZnO(1010) is more reactive than that of ZnO(1120) for CO oxidation. From the calculated energetics and structures, the main reaction product on both surfaces can be determined to be CO2 rather than carbonate. Moreover, the surface conductivity changes during the adsorption and reaction processes of CO were also studied. For both ZnO (1010) and (1120), the conductivity would increase upon CO adsorption and decrease following CO oxidation, in consistence with the reported experimental results. This work can help understand the origins of ZnO-based sensors' performances and the development of novel gas sensors with higher sensitivity and selectivity.
  • 加载中
    1. [1]

      P. Rodlamul, S. Tamura, N. Imanaka, J. Ceram. Soc. Jpn. 126(2018) 750-754.

    2. [2]

      World Health Organization, WHO Guidelines for Indoor Air Quality: Selected Pollutants, (2010).

    3. [3]

      K.Z. Qi, G.C. Wang, W.J. Zheng, Surf. Sci. 614(2013) 53-63.

    4. [4]

      D. Punetha, S.K. Pandey, IEEE Sens. J. 19(2019) 2450-2457.

    5. [5]

      T. Nandy, R.A. Coutu, C. Ababei, Sensors 18 (2018) 3443.

    6. [6]

      J.K. Lee, W.S. Lee, W.I. Lee, et al., Phys. Status Solidi A. 215(2018) 1700929.

    7. [7]

      M. Hjiri, L. El Mir, S.G. Leonardi, et al., Sens. Actuators B-Chem. 196(2014) 413-420.

    8. [8]

      L. Zhu, W. Zeng, Sens. Actuators A-Phys. 267(2017) 242-261.

    9. [9]

      K.Z. Qi, X.H. Xing, A. Zada, et al., Ceram. Int. 46(2020) 1494-1502.

    10. [10]

      K.Z. Qi, B. Cheng, J.G. Yu, W.K. Ho, J. Alloys. Compd. 727(2017) 792-820.

    11. [11]

      K.Z. Qi, Q. Qin, X.C. Duan, et al., Chem. Eur. J. 20(2014) 9012-9017.

    12. [12]

      K.Z. Qi, J.Q. Yang, J.Q. Fu, et al., CrystEngComm 15(2013) 6729-6735.

    13. [13]

      S. Arunkumar, T. Hou, Y. Kim, et al., Sens. Actuators B-Chem. 243(2017) 990-1001.

    14. [14]

      R. Dhahri, M. Hjiri, L. El Mir, et al., J. Phys. D Appl. Phys. 49(2016) 135502.

    15. [15]

      X. Pan, X. Zhao, Sensors 15(2015) 8919-8930.

    16. [16]

      O. Lupan, V. Cretu, V. Postica, et al., Sens. Actuators B-Chem. 223(2016) 893-903.

    17. [17]

      K. Yadav, S.K. Gahlaut, B.R. Mehta, J.P. Singh, Appl. Phys. Lett. 108 (2016) 071602.

    18. [18]

      S.M. Mohammad, Z. Hassan, R.A. Talib, et al., J. Mater. Sci. 27(2016) 9461-9469.

    19. [19]

      S.W. Fan, A.K. Srivastava, V.P. Dravid, Appl. Phys. Lett. 95(2009) 142106.

    20. [20]

      R. Paulraj, P. Shankar, G.K. Mani, L. Nallathambi, J.B.B. Rayappan, J.Mater. Sci. 28(2017) 10799-10805.

    21. [21]

      T.Y. Tiong, C.F. Dee, A.A. Hamzah, B.Y. Majlis, S.A. Rahman, Sens. Actuators BChem. 202(2014) 1322-1332.

    22. [22]

      J. Wang, X. Li, Y. Xia, et al., ACS Appl. Mater. Interfaces 8(2016) 8600-8607.

    23. [23]

      M.R. Alenezi, S.J. Henley, N.G. Emerson, S.R.P. Silva, Nanoscale 6(2014) 235-247.

    24. [24]

      L.M. Yu, F. Guo, S. Liu, et al., J. Alloys. Compd. 682(2016) 352-356.

    25. [25]

      A. Gusain, N.J. Joshi, P.V. Varde, D.K. Aswal, Sens. Actuators B-Chem. 239(2017) 734-745.

    26. [26]

      B.H. Zhang, M. Li, Z.L. Song, et al., Sens. Actuators B-Chem. 249(2017) 558-563.

    27. [27]

      Z.S. Hosseini, A. Irajizad, A. Mortezaali, Sens. Actuators B-Chem. 207(2015) 865-871.

    28. [28]

      J.F. Deng, Q.Y. Fu, W. Luo, et al., Sens. Actuators B-Chem. 224(2016) 153-158.

    29. [29]

      G. Kresse, J. Hafner, Phys. Rev. B 47(1993) 558-561.

    30. [30]

      G. Kresse, J. Hafner, Phys. Rev. B 49(1994) 14251-14269.

    31. [31]

      J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(1996) 3865-3868.

    32. [32]

      P.E. Blochl, Phys. Rev. B 50(1994) 17953-17979.

    33. [33]

      G. Kresse, D. Joubert, Phys. Rev. B 59(1999) 1758-1775.

    34. [34]

      A. Alavi, P. Hu, T. Deutsch, P.L. Silvestrelli, J. Hutter, Phys. Rev. Lett. 80(1998) 3650-3653.

    35. [35]

      D. Wang, J. Jiang, H.F. Wang, P. Hu, ACS Catal. 6(2015) 733-741.

    36. [36]

      H.F. Wang, Z.P. Liu, J. Am. Chem. Soc. 130(2008) 10996-11004.

    37. [37]

      D.J. Cooke, A. Marmier, S.C. Parker, J. Phys. Chem. B 110(2006) 7985-7991.

    38. [38]

      T. Arai, K. Maruya, K. Domen, T. Onishi, Chem. Lett. 1(1989) 47-50.

    39. [39]

      Y. Madier, C. Descorme, A.M. Le Govic, D. Duprez, J. Phys. Chem. B 103(1999) 10999-11006.

    40. [40]

      M.Boaro, F.Giordano, S.Recchia, etal., Appl.Catal.BEnviron.52(2004)225-237.

    41. [41]

      J.M. Ziman, Principles of The Theory of Solids, World Book Inc, Beijing, 2009.

    42. [42]

      S. Mehraeen, V. Coropceanu, J.L. Bredas, Phys. Rev. B 87 (2013) 195209.

    43. [43]

      J.P. Heremans, B. Wiendlocha, A.M. Chamoire, Energ. Environ. Sci. 5(2012) 5510-5530.

    44. [44]

      M. Boujnah, M. Boumdyan, S. Naji, et al., J. Alloys. Compd. 671(2016) 560-565.

    45. [45]

      Q.Y. Hou, J.J. Li, C.W. Zhao, C. Ying, Y. Zhang, Physica B 406(2011) 1956-1960.

    46. [46]

      D. Fruchart, V.A. Romaka, Y.V. Stadnyk, et al., J. Alloys. Compd. 438(2007) 8-14.

    47. [47]

      T. Yamamoto, Phys. Status Solidi 193(2002) 423-433.

    48. [48]

      M. Saha, S. Ghosh, V.D. Ashok, S.K. De, Phys. Chem. Chem. Phys. 17(2015) 16067-16079.

    49. [49]

      A. Nakrela, N. Benramdane, A. Bouzidi, et al., Results Phys. 6(2016) 133-138.

    50. [50]

      Z.H. Wang, Z.W. Tian, D.M. Han, F.B. Gu, ACS Appl. Mater. Interfaces 8(2016) 5466-5474.

    51. [51]

      D. Gaspar, L. Pereira, K. Gehrke, et al., Sol. Energy Mater. Sol. Cells 163(2017) 255-262.

  • 加载中
    1. [1]

      Chao Li Zhi Shuo Yu Shao Ming Fang Huan Xin Wang Yang Hai Gui Jia Qiang Xu Rong Feng Chen . Fabrication and gas sensing property of honeycomb-like ZnO. Chinese Chemical Letters, 2008, 19(5): 599-603. doi: 10.1016/j.cclet.2008.03.032

    2. [2]

      YUAN Hong-WenWANG Yu-LuMA ChiGENG Jun-LongZHANG Li-QiangCUI Hai . Co3O4/ZnO Modified Acupuncture Needle:Preparation and Application in Detecting Glucose. Chinese Journal of Inorganic Chemistry, 2017, 33(7): 1139-1146. doi: 10.11862/CJIC.2017.118

    3. [3]

      FAN Tao-JianYUAN Jun-HuiYANG Yong-YongYU Nian-NianWANG Jia-Fu . First-Principles Calculations of the Electronic Structure and Optical Properties of Co-Y Co-doped ZnO. Chinese Journal of Inorganic Chemistry, 2016, 32(7): 1183-1189. doi: 10.11862/CJIC.2016.162

    4. [4]

      Wang QingjiBao LiwenCao ZongqiangLi ChaoyangLi XuLiu FangmengSun PengLu Geyu . Microwave-assisted hydrothermal synthesis of Pt/SnO2 gas sensor for CO detection. Chinese Chemical Letters, 2020, 31(8): 2029-2032. doi: 10.1016/j.cclet.2019.12.007

    5. [5]

      Ding PeiXu DongshengDong NanChen YingXu PengchengZheng DanLi Xinxin . A high-sensitivity H2S gas sensor based on optimized ZnO-ZnS nano-heterojunction sensing material. Chinese Chemical Letters, 2020, 31(8): 2050-2054. doi: 10.1016/j.cclet.2019.11.024

    6. [6]

      Fang YiGong Xueqing . Genetic algorithm aided density functional theory simulations unravel the kinetic nature of Au(100) in catalytic CO oxidation. Chinese Chemical Letters, 2019, 30(6): 1346-1350. doi: 10.1016/j.cclet.2018.12.025

    7. [7]

      Zhong Ping Li Yong Guo Suo Zhu Wu Shao Min Shuang Chuan Dong . Methane sensor based on palladium/MWNT nanocomposites. Chinese Chemical Letters, 2009, 20(5): 608-610. doi: 10.1016/j.cclet.2008.12.031

    8. [8]

      Zhang BinWan HongZheng Yan-KeRuan QianWu Nian-ZuXie You-ChangTang You-Qi . Study of Dispersion of MoO3,NiO,ZnO onto Rutile with Low Surface Area. Acta Physico-Chimica Sinica, 1998, 14(05): 385-390. doi: 10.3866/PKU.WHXB19980501

    9. [9]

      You Gui Chen Lin Zhuang Jun Tao Lu . A combined electrochemical and DFT study of the lattice strain effect on the surface reactivity of Pd. Chinese Chemical Letters, 2007, 18(10): 1301-1304. doi: 10.1016/j.cclet.2007.08.006

    10. [10]

      Yuan-Ye JiangHai-Zhu YuJing Shi . Mechanistic study on the regioselectivity of Co-catalyzed hydroacylation of 1,3-dienes. Chinese Chemical Letters, 2015, 26(1): 58-62. doi: 10.1016/j.cclet.2014.10.021

    11. [11]

      Wei Ping HUANG Xiu Cheng ZHENG Shou Min ZHANG Xiao Hang QIU Wei WEI Bao Qing LI Shi Hua WU . Oxidation of Carbon Monoxide over Cu/CeO2 Catalysts Prepared by SMAI. Chinese Chemical Letters, 2001, 12(12): 1119-1122.

    12. [12]

      Guo Huang XIE Zhi Cheng JIANG Ting Fang BAI Han Qing WANG . Catalytic Activity and Stability of Mo2N in CO Oxidation. Chinese Chemical Letters, 1998, 9(6): 579-581.

    13. [13]

      Peng JinLiao JieYang XiaozhanFeng Wenlin . Fiber-optic dual Fabry-Pérot interferometric carbon monoxide sensor with polyaniline/Co3O4/graphene oxide sensing membrane. Chinese Chemical Letters, 2020, 31(8): 2145-2149. doi: 10.1016/j.cclet.2019.11.050

    14. [14]

      TIAN YuLi LIXIN Zi-ChanZHANG Wen-ZhiXU Ying-Ming . Multimode Photodegradation and Photocatalytic Hydrogen Production of Flower Globular-like Heterostructure Composite ZnS/ZnO/ZnWO4. Chinese Journal of Inorganic Chemistry, 2019, 35(3): 493-504. doi: 10.11862/CJIC.2019.067

    15. [15]

      Yuan ChaoweiCui WenSun YanjuanWang JiadongChen RuiminZhang JinZhang YuxinDong Fan . Inhibition of the toxic byproduct during photocatalytic NO oxidation via La doping in ZnO. Chinese Chemical Letters, 2020, 31(3): 751-754. doi: 10.1016/j.cclet.2019.09.033

    16. [16]

      Ai Ping FU Dong Mei DU Zheng Yu ZHOU . Density Functional Study on the Vibrational Frequencies of Hydrazoic Acid and Methyl Azide. Chinese Chemical Letters, 1999, 10(7): 619-622.

    17. [17]

      Zheng Guo Huang Li Zhou En Cui Yang . A density functional theoretical studies on the structures and aromaticities of (CH)n(BCO)6-n (n=0-6). Chinese Chemical Letters, 2008, 19(11): 1383-1386. doi: 10.1016/j.cclet.2008.07.025

    18. [18]

      Da Zhi LI Xin Yu SONG Si Xiu SUN Jin Xin GUO . A Simple Method for the Preparation of ZnO Prickly Spheres. Chinese Chemical Letters, 2004, 15(6): 733-736.

    19. [19]

      TANG Wen-DongGAO Yang-YanWEI WeiSUN Yu-Han . Adsorption of Urea onto a ZnO(10-10) Surface. Acta Physico-Chimica Sinica, 2010, 26(05): 1373-1377. doi: 10.3866/PKU.WHXB20100503

    20. [20]

      NIU Xin-ShuDU Wei-PingDU Wei-MinJIANG Kai . Preparation of Nano-ZnO and Its Gas Sensitivity. Chinese Journal of Applied Chemistry, 2003, 20(10): 968-971.

Metrics
  • PDF Downloads(4)
  • Abstract views(131)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return