Novel advances in metal-based solar absorber for photothermal vapor generation
-
* Corresponding author.
E-mail address: wangcb@sust.edu.cn (C. Wang).
Citation:
Li Zhengtong, Wang Chengbing. Novel advances in metal-based solar absorber for photothermal vapor generation[J]. Chinese Chemical Letters,
;2020, 31(9): 2159-2166.
doi:
10.1016/j.cclet.2019.09.030
W. Chen, S. Chen, T. Liang, et al., Nat. Nanotechnol. 13(2018) 345-350.
doi: 10.1038/s41565-018-0067-5
Z. Li, C. Wang, J. Su, et al., Sol. RRL 3(2019) 1800206.
doi: 10.1002/solr.201800206
P. Tao, G. Ni, C. Song, et al., Nat. Energy 3(2018) 1031-1041.
doi: 10.1038/s41560-018-0260-7
H. Kou, Z. Liu, B. Zhu, et al., Desalination 462(2019) 29-38.
doi: 10.1016/j.desal.2019.04.005
Z.Y. Deng, J.H. Zhou, L. Miao, et al., J. Mater. Chem. A 5(2017) 7691-7709.
doi: 10.1039/C7TA01361B
S.V. Boriskina, A. Raza, T. Zhang, et al., MRS Bull. 44(2019) 59-66.
doi: 10.1557/mrs.2018.325
Y. Bian, Q. Du, K. Tang, et al., Adv. Mater. Technol. 4(2018) 1800593.
B. Chen, H. Jiang, H. Liu, et al., 2D Mater. 6(2019) 035018.
doi: 10.1088/2053-1583/ab15ac
P. Mu, W. Bai, Y. Fan, et al., J. Mater. Chem. A 7(2019) 9673-9679.
doi: 10.1039/C8TA12243A
Z. Zhang, P. Mu, J. He, et al., ChemSusChem 12(2019) 426-433.
doi: 10.1002/cssc.201802406
P. Mu, W. Bai, Z. Zhang, et al., J. Mater. Chem. A 6(2018) 18183-18190.
doi: 10.1039/C8TA05698F
P. Mu, Z. Zhang, W. Bai, et al., Adv. Energy Mater. 9(2019) 1802158.
doi: 10.1002/aenm.201802158
J. Li, M. Du, G. Lv, et al., Adv. Mater. 30(2018) e1805159.
doi: 10.1002/adma.201805159
C. Wang, W. Cheng, P. Ma, R. Xia, X. Ling, J. Mater. Chem. A 5(2017) 2852-2860.
doi: 10.1039/C6TA09460K
C. Wang, Z. Li, W. Wang, R. Xia, X. Ling, J. Mater. Chem. A (2019) 13080-13089.
W. Wang, H. Wen, S. Ling, et al., J. Mater. Chem. A 6(2018) 15690-15700.
doi: 10.1039/C8TA05231J
W. Wang, H. Wen, J. Shi, et al., Sol. RRL 3(2019) 1900180.
doi: 10.1002/solr.201900180
X. Li, W. Xu, M. Tang, et al., Proc. Natl. Acad. Sci. U. S. A.113(2016) 13953-13958.
doi: 10.1073/pnas.1613031113
J. Chang, Y. Shi, M. Wu, et al., J. Mater. Chem. A 6(2018) 9192-9199.
doi: 10.1039/C8TA00779A
M. Wu, Y. Shi, J. Chang, et al., Adv. Mater. Interfaces 5(2018) 1800412.
doi: 10.1002/admi.201800412
V. Kashyap, R. Medhi, P. Irajizad, et al., Sustain. Energy Fuel. 3(2019) 272-279.
doi: 10.1039/C8SE00546J
R. Li, P. Wang, Rational Design of Nextgeneration Nanomaterials and Nanodevices for Water Applications (Eds), 2020, pp. 1-12.
J.B. Zimmerman, J.R. Mihelcic, J. Smith, Environ. Sci. Technol. 42(2008) 4247-4254.
doi: 10.1021/es0871457
G.N. Tiwari, H.N. Singh, R. Tripathi, Sol. Energy 75(2003) 367-373.
doi: 10.1016/j.solener.2003.07.005
Y. Yang, H. Zhao, Z. Yin, et al., Mater. Horiz. 5(2018) 1143-1150.
doi: 10.1039/C8MH00386F
P. Ma, Y. Sun, X. Zhang, J. Chen, et al., Energy Storage Mater. 23(2019) 159-167.
L. Zhou, Y.L. Tan, J.Y. Wang, et al., Nat. Photonics 10(2016) 393.
doi: 10.1038/nphoton.2016.75
L. Zhou, Y. Tan, D. Ji, et al., Sci. Adv. 2(2016) e1501227.
doi: 10.1126/sciadv.1501227
H.D. Kiriarachchi, F.S. Awad, et al., Shall, Nanoscale 10(2018) 18531-18539.
doi: 10.1039/C8NR05916K
Y. Liu, Z. Liu, Q. Huang, et al., J. Mater. Chem. A 7(2019) 2581-2588.
doi: 10.1039/C8TA10227A
Y. Liu, S. Yu, R. Feng, et al., Adv. Mater. 27(2015) 2768-2774.
doi: 10.1002/adma.201500135
L. Tian, J. Luan, K.K. Liu, et al., Nano Lett. 16(2016) 609-616.
doi: 10.1021/acs.nanolett.5b04320
H. Wang, L. Miao, S. Tanemura, Sol. RRL 1(2017) 1600023.
doi: 10.1002/solr.201600023
T. Wu, H. Li, M. Xie, et al., Mater. Today Energy 12(2019) 129-135.
doi: 10.1016/j.mtener.2018.12.008
Y. Yang, X. Yang, L. Fu, et al., ACS Energy Lett. 3(2018) 1165-1171.
doi: 10.1021/acsenergylett.8b00433
L. Yi, S. Ci, S. Luo, et al., Nano Energy 41(2017) 600-608.
doi: 10.1016/j.nanoen.2017.09.042
L. Zhang, J. Xing, X. Wen, et al., Nanoscale 9(2017) 12843-12849.
doi: 10.1039/C7NR05149B
X. Lin, M. Yang, W. Hong, D. Yu, X. Chen, Front. Mater. 5(2018) 74.
doi: 10.3389/fmats.2018.00074
M. Wang, P. Wang, J. Zhang, C. Li, Y. Jin, ChemSusChem 12(2019) 467-472.
doi: 10.1002/cssc.201802485
G. Song, Y. Yuan, J. Liu, et al., Adv. Sustainable Syst. 3(2019) 1900003.
doi: 10.1002/adsu.201900003
Z. Lin, Y. Tan, D. Ji, B. Zhu, et al., Sci. Adv. 2(2016) e1501227.
doi: 10.1126/sciadv.1501227
H. Ren, M. Tang, B. Guan, et al., Adv. Mater. 29(2017) 1702590.
doi: 10.1002/adma.201702590
S.M. Sajadi, N. Farokhnia, P. Irajizad, et al., J. Mater. Chem. A 4(2016) 4700-4705.
doi: 10.1039/C6TA01205A
D. Wu, D. Qu, W. Jiang, et al., J. Mater. Chem. A 7(2019) 8485-8490.
doi: 10.1039/C9TA00529C
L. Zhang, B. Tang, J. Wu, R. Li, P. Wang, Adv. Mater. 27(2015) 4889-4894.
doi: 10.1002/adma.201502362
M. Zhu, Y. Li, F. Chen, et al., Adv. Energy Mater. 8(2018) 1701028.
doi: 10.1002/aenm.201701028
K. Yin, S. Yang, J. Wu, et al., J. Mater. Chem. A 7(2019) 8361-8367.
doi: 10.1039/C9TA00291J
S. Ma, W. Qarony, M.I. Hossain, C.T. Yip, Y.H. Tsang, Sol. Energy Mater. Sol. Cells 196(2019) 36-42.
doi: 10.1016/j.solmat.2019.02.035
J. Yao, Z. Zheng, G. Yang, Nanoscale 10(2018) 2876-2886.
doi: 10.1039/C7NR09229F
C. Chang, P. Tao, B. Fu, et al., ACS Omega 4(2019) 3546-3555.
doi: 10.1021/acsomega.8b03573
Q. Ma, P. Yin, M. Zhao, et al., Adv. Mater. 31(2019) e1808249.
doi: 10.1002/adma.201808249
M. Kaur, S. Ishii, S.L. Shinde, T. Nagao, Adv. Sustain. Syst. 3(2019) 1800112.
doi: 10.1002/adsu.201800112
C. Wang, Y. Wang, X. Song, M. Huang, H. Jiang, Adv. Sustain. Syst. 3(2019) 1800108.
doi: 10.1002/adsu.201800108
P. Ren, X. Yang, Sol. RRL 2(2018) 1700233.
doi: 10.1002/solr.201700233
L. Yi, D. Qi, P. Shao, et al., Nanoscale 1(2019) 9958-9968.
L. Shi, Y. Shi, S. Zhuo, et al., Nano Energy 60(2019) 222-230.
doi: 10.1016/j.nanoen.2019.03.039
H. Liu, C. Chen, H. Wen, et al., J. Mater. Chem. A 6(2018) 18839-18846.
doi: 10.1039/C8TA05924A
X. Zhang, X. Wang, W.D. Wu, X.D. Chen, Z. Wu, J. Mater. Chem. A 7(2019) 6963-6971.
doi: 10.1039/C8TA12290C
F. Zhang, Y. Li, X. Bai, et al., J. Mater. Chem. A 6(2018) 23263-23269.
doi: 10.1039/C8TA08259F
M. Ye, J. Jia, Z. Wu, et al., Adv. Energy Mater. 7(2017) 1601811.
doi: 10.1002/aenm.201601811
Y. Shi, R. Li, L. Shi, et al., Adv. Sustain. Syst. 2(2018) 1700145.
doi: 10.1002/adsu.201700145
Q. Lu, Y. Yang, J. Feng, X. Wang, Sol. RRL 3(2019) 1800277.
doi: 10.1002/solr.201800277
X.-Y. Wang, J. Xue, C. Ma, et al., J. Mater. Chem. A 7(2019) 16696-16703.
doi: 10.1039/C9TA02210D
L. Zhao, Q. Yang, W. Guo, et al., ACS Appl. Mater. Interfaces 11(2019) 20820-20827.
doi: 10.1021/acsami.9b04452
T.F. Chala, C.M. Wu, M.H. Chou, Z.L. Guo, ACS Appl. Mater. Interfaces 10(2018) 28955-28962.
doi: 10.1021/acsami.8b07434
L. Zhu, L. Sun, H. Zhang, et al., Nano Energy 57(2019) 842-850.
doi: 10.1016/j.nanoen.2018.12.058
M. Rycenga, C.M. Cobley, J. Zeng, et al., Chem. Rev. 111(2011) 3669-3712.
doi: 10.1021/cr100275d
Z. Li, L. Sun, Y. Liu, et al., Environ. Sci. Nano 6(2019) 1507-1515.
doi: 10.1039/C9EN00149B
Y. Liu, X. Li, W. Shen, et al., Small 15(2019) 1804737.
doi: 10.1002/smll.201804737
Y.S. Jun, X. Wu, D. Ghim, et al., Acc. Chem. Res. 52(2019) 1215-1225.
C. Chen, Y. Kuang, L. Hu, Joule 3(2019) 683-718.
doi: 10.1016/j.joule.2018.12.023
N. Xu, X.Z. Hu, W.C. Xu, et al., Adv. Mater. 29(2017) 1606762.
doi: 10.1002/adma.201606762
A. Raza, J.Y. Lu, S. Alzaim, H. Li, T. Zhang, Energies 11(2018) 253.
doi: 10.3390/en11010253
Y. Zeng, J. Yao, B.A. Horri, et al., Energy Environ. Sci. 4(2011) 4074-4078.
doi: 10.1039/c1ee01532j
N.J. Hogan, A.S. Urban, C. Ayala-Orozco, et al., Nano Lett.14(2014) 4640-4645.
doi: 10.1021/nl5016975
D. Zhao, H. Duan, S. Yu, et al., Sci. Rep. 5(2015) 17276.
doi: 10.1038/srep17276
Z. Wang, Y. Liu, P. Tao, et al., Small 10(2014) 3234-3239.
doi: 10.1002/smll.201401071
K. Zhang, L. Hao, M. Du, et al., Renew. Sustain. Energy Rev. 67(2017) 1282-1299.
doi: 10.1016/j.rser.2016.09.083
X.H. Gao, W. Theiss, Y.Q. Shen, P.J. Ma, G. Liu, Sol. Energy Mater. Sol. Cells 167(2017) 150-156.
doi: 10.1016/j.solmat.2017.04.015
A. Dan, H.C. Barshilia, K. Chattopadhyay, B. Basu, Renew. Sustain. Energy Rev. 79(2017) 1050-1077.
doi: 10.1016/j.rser.2017.05.062
F. Cao, K. McEnaney, G. Chen, Z. Ren, Energy Environ. Sci. 7(2014) 1615-1627.
doi: 10.1039/c3ee43825b
J. Huang, Y. He, M. Chen, X. Wang, Appl. Energy 236(2019) 244-252.
doi: 10.1016/j.apenergy.2018.11.090
G. Ni, G. Li, S.V. Boriskina, et al., Nat. Energy 1(2016) 16126.
doi: 10.1038/nenergy.2016.126
T.A. Cooper, S.H. Zandavi, G.W. Ni, Y. Tsurimaki, et al., Nat. Commun. 9(2018) 5086.
doi: 10.1038/s41467-018-07494-2
Z. Li, C. Wang, Z. Li, et al., Energy Technol. 7(2019) 1900406.
doi: 10.1002/ente.201900406
Z. Li, C. Wang, T. Lei, et al., Adv. Sustain. Syst. 3(2019) 1800144.
doi: 10.1002/adsu.201800144
K. Bae, G. Kang, S.K. Cho, et al., Nat Commun. 6(2015) 10103.
doi: 10.1038/ncomms10103
H. Li, Y. He, Z. Liu, B. Jiang, Y. Huang, Energy 139(2017) 210-219.
doi: 10.1016/j.energy.2017.07.180
H. Liu, X. Zhang, Z. Hong, et al., Nano Energy 42(2017) 115-121.
doi: 10.1016/j.nanoen.2017.10.039
C. Mu, Y. Song, K. Deng, et al., Adv. Sustainable Syst. 1(2017) 1700064.
doi: 10.1002/adsu.201700064
X. Gao, H.Y. Ren, J.Y. Zhou, et al., Chem. Mater. 29(2017) 5777-5781.
doi: 10.1021/acs.chemmater.7b01838
Z. Liu, Z. Yang, X. Huang, et al., J. Mater. Chem. A 5(2017) 20044-20052.
doi: 10.1039/C7TA06384A
R. Chen, K. Zhu, Q. Gan, et al., Mater. Chem. Front. 1(2017) 2620-2626.
doi: 10.1039/C7QM00374A
R. Li, L. Zhang, L. Shi, P. Wang, ACS Nano 11(2017) 3752-3759.
doi: 10.1021/acsnano.6b08415
H. Wen, W. Wang, W. Wang, et al., Sol. Energy Mater. Sol. Cells 202(2019) 110152.
doi: 10.1016/j.solmat.2019.110152
Yuling Ma , Dongqing Liu , Tao Zhang , Chengjie Song , Dongmei Liu , Peizhi Wang , Wei Wang . Bimetallic composite carbon fiber with persulfate mediation for intercepting volatile organic compounds during solar interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 110000-. doi: 10.1016/j.cclet.2024.110000
Yiming Fang , Huimin Gao , Kaiting Cheng , Liang Bai , Zhengtong Li , Yadong Zhao , Xingtao Xu . An overview of photothermal materials for solar-driven interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 109925-. doi: 10.1016/j.cclet.2024.109925
Tiantian Man , Fulin Zhu , Yaqi Huang , Yuhao Piao , Yan Su , Shengyuan Deng , Ying Wan . Mobile mini-fluorimeter for antibiotic aptasensing based on surface-plasmonic effect of burlike nanogolds enhanced by digitized imaging diagnosis. Chinese Chemical Letters, 2024, 35(5): 109036-. doi: 10.1016/j.cclet.2023.109036
Deqi Fan , Yicheng Tang , Yemei Liao , Yan Mi , Yi Lu , Xiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
Jian-Rong Li , Jieying Hu , Lai-Hon Chung , Jilong Zhou , Parijat Borah , Zhiqing Lin , Yuan-Hui Zhong , Hua-Qun Zhou , Xianghua Yang , Zhengtao Xu , Jun He . Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion. Chinese Journal of Structural Chemistry, 2024, 43(8): 100380-100380. doi: 10.1016/j.cjsc.2024.100380
Dongmei Yao , Junsheng Zheng , Liming Jin , Xiaomin Meng , Zize Zhan , Runlin Fan , Cong Feng , Pingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382
Rui Liu , Yue Yu , Lu Deng , Maoxia Xu , Haorong Ren , Wenjie Luo , Xudong Cai , Zhenyu Li , Jingyu Chen , Hua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545
Yan Wang , Si-Meng Zhai , Peng Luo , Xi-Yan Dong , Jia-Yin Wang , Zhen Han , Shuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493
Bo Yang , Pu-An Lin , Tingwei Zhou , Xiaojia Zheng , Bing Cai , Wen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425
Boyuan Hu , Jian Zhang , Yulin Yang , Yayu Dong , Jiaqi Wang , Wei Wang , Kaifeng Lin , Debin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933
Chengcheng Xie , Chengyi Xiao , Hongshuo Niu , Guitao Feng , Weiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849
Weiping Guo , Ying Zhu , Hong-Hua Cui , Lingyun Li , Yan Yu , Zhong-Zhen Luo , Zhigang Zou . β-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256
Zhenyu Hu , Zhenchun Yang , Shiqi Zeng , Kun Wang , Lina Li , Chun Hu , Yubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526
Min Chen , Boyu Peng , Xuyun Guo , Ye Zhu , Hanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051
Yaohua Li , Qi Cao , Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413
Chen Lu , Zefeng Yu , Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240
Chi Li , Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324
Xian Yan , Huawei Xie , Gao Wu , Fang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279
Xiaoyu Zhang , Xin Yu . Solar-powered heterogeneous water disinfection nano-system. Chinese Journal of Structural Chemistry, 2025, 44(3): 100439-100439. doi: 10.1016/j.cjsc.2024.100439